Mercurial > hg > camir-aes2014
comparison toolboxes/FullBNT-1.0.7/KPMstats/linear_regression.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:e9a9cd732c1e |
---|---|
1 function [muY, SigmaY, weightsY] = linear_regression(X, Y, varargin) | |
2 % LINEAR_REGRESSION Fit params for P(Y|X) = N(Y; W X + mu, Sigma) | |
3 % | |
4 % X(:, t) is the t'th input example | |
5 % Y(:, t) is the t'th output example | |
6 % | |
7 % Kevin Murphy, August 2003 | |
8 % | |
9 % This is a special case of cwr_em with 1 cluster. | |
10 % You can also think of it as a front end to clg_Mstep. | |
11 | |
12 [cov_typeY, clamp_weights, muY, SigmaY, weightsY,... | |
13 cov_priorY, regress, clamp_covY] = process_options(... | |
14 varargin, ... | |
15 'cov_typeY', 'full', 'clamp_weights', 0, ... | |
16 'muY', [], 'SigmaY', [], 'weightsY', [], ... | |
17 'cov_priorY', [], 'regress', 1, 'clamp_covY', 0); | |
18 | |
19 [nx N] = size(X); | |
20 [ny N2] = size(Y); | |
21 if N ~= N2 | |
22 error(sprintf('nsamples X (%d) ~= nsamples Y (%d)', N, N2)); | |
23 end | |
24 | |
25 w = 1/N; | |
26 WYbig = Y*w; | |
27 WYY = WYbig * Y'; | |
28 WY = sum(WYbig, 2); | |
29 WYTY = sum(diag(WYbig' * Y)); | |
30 if ~regress | |
31 % This is just fitting an unconditional Gaussian | |
32 weightsY = []; | |
33 [muY, SigmaY] = ... | |
34 mixgauss_Mstep(1, WY, WYY, WYTY, ... | |
35 'cov_type', cov_typeY, 'cov_prior', cov_priorY); | |
36 % There is a much easier way... | |
37 assert(approxeq(muY, mean(Y'))) | |
38 assert(approxeq(SigmaY, cov(Y') + 0.01*eye(ny))) | |
39 else | |
40 % This is just linear regression | |
41 WXbig = X*w; | |
42 WXX = WXbig * X'; | |
43 WX = sum(WXbig, 2); | |
44 WXTX = sum(diag(WXbig' * X)); | |
45 WXY = WXbig * Y'; | |
46 [muY, SigmaY, weightsY] = ... | |
47 clg_Mstep(1, WY, WYY, WYTY, WX, WXX, WXY, ... | |
48 'cov_type', cov_typeY, 'cov_prior', cov_priorY); | |
49 end | |
50 if clamp_covY, SigmaY = SigmaY; end | |
51 if clamp_weights, weightsY = weightsY; end | |
52 | |
53 if nx==1 & ny==1 & regress | |
54 P = polyfit(X,Y); % Y = P(1) X^1 + P(2) X^0 = ax + b | |
55 assert(approxeq(muY, P(2))) | |
56 assert(approxeq(weightsY, P(1))) | |
57 end | |
58 | |
59 %%%%%%%% Test | |
60 if 0 | |
61 c1 = randn(2,100); c2 = randn(2,100); | |
62 y = c2(1,:); X = [ones(size(c1,2),1) c1']; | |
63 b = regress(y(:), X); % stats toolbox | |
64 [m,s,w] = linear_regression(c1, y); | |
65 assert(approxeq(b(1),m)) | |
66 assert(approxeq(b(2), w(1))) | |
67 assert(approxeq(b(3), w(2))) | |
68 end |