Mercurial > hg > camir-aes2014
comparison toolboxes/FullBNT-1.0.7/KPMstats/chisquared_prob.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:e9a9cd732c1e |
---|---|
1 function P = chisquared_prob(X2,v) | |
2 %CHISQUARED_PROB computes the chi-squared probability function. | |
3 % P = CHISQUARED_PROB( X2, v ) returns P(X2|v), the probability | |
4 % of observing a chi-squared value <= X2 with v degrees of freedom. | |
5 % This is the probability that the sum of squares of v unit-variance | |
6 % normally-distributed random variables is <= X2. | |
7 % X2 and v may be matrices of the same size size, or either | |
8 % may be a scalar. | |
9 % | |
10 % e.g., CHISQUARED_PROB(5.99,2) returns 0.9500, verifying the | |
11 % 95% confidence bound for 2 degrees of freedom. This is also | |
12 % cross-checked in, e.g., Abramowitz & Stegun Table 26.8 | |
13 % | |
14 % See also CHISQUARED_TABLE | |
15 % | |
16 %Peter R. Shaw, WHOI | |
17 | |
18 % References: Press et al., Numerical Recipes, Cambridge, 1986; | |
19 % Abramowitz & Stegun, Handbook of Mathematical Functions, Dover, 1972. | |
20 | |
21 % Peter R. Shaw, Woods Hole Oceanographic Institution | |
22 % Woods Hole, MA 02543 | |
23 % (508) 457-2000 ext. 2473 pshaw@whoi.edu | |
24 % March, 1990; fixed Oct 1992 for version 4 | |
25 | |
26 % Computed using the Incomplete Gamma function, | |
27 % as given by Press et al. (Recipes) eq. (6.2.17) | |
28 | |
29 % Following nonsense is necessary from Matlab version 3 -> version 4 | |
30 versn_str=version; eval(['versn=' versn_str(1) ';']); | |
31 if versn<=3, %sigh | |
32 P = gamma(v/2, X2/2); | |
33 else | |
34 P = gammainc(X2/2, v/2); | |
35 end |