Mercurial > hg > camir-aes2014
comparison toolboxes/FullBNT-1.0.7/HMM/dhmm_em_demo.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:e9a9cd732c1e |
---|---|
1 O = 3; | |
2 Q = 2; | |
3 | |
4 % "true" parameters | |
5 prior0 = normalise(rand(Q,1)); | |
6 transmat0 = mk_stochastic(rand(Q,Q)); | |
7 obsmat0 = mk_stochastic(rand(Q,O)); | |
8 | |
9 % training data | |
10 T = 5; | |
11 nex = 10; | |
12 data = dhmm_sample(prior0, transmat0, obsmat0, T, nex); | |
13 | |
14 % initial guess of parameters | |
15 prior1 = normalise(rand(Q,1)); | |
16 transmat1 = mk_stochastic(rand(Q,Q)); | |
17 obsmat1 = mk_stochastic(rand(Q,O)); | |
18 | |
19 % improve guess of parameters using EM | |
20 [LL, prior2, transmat2, obsmat2] = dhmm_em(data, prior1, transmat1, obsmat1, 'max_iter', 5); | |
21 LL | |
22 | |
23 % use model to compute log likelihood | |
24 loglik = dhmm_logprob(data, prior2, transmat2, obsmat2) | |
25 % log lik is slightly different than LL(end), since it is computed after the final M step |