annotate toolboxes/distance_learning/mlr/mlr_demo.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
rev   line source
wolffd@0 1 function mlr_demo()
wolffd@0 2
wolffd@0 3 display('Loading Wine data');
wolffd@0 4 load Wine;
wolffd@0 5
wolffd@0 6 % z-score the input dimensions
wolffd@0 7 display('z-scoring features');
wolffd@0 8 X = zscore(X')';
wolffd@0 9
wolffd@0 10 [d,n] = size(X);
wolffd@0 11
wolffd@0 12 % Generate a random training/test split
wolffd@0 13 display('Generating a 80/20 training/test split');
wolffd@0 14 P = randperm(n);
wolffd@0 15 Xtrain = X(:,P(1:floor(0.8 * n)));
wolffd@0 16 Ytrain = Y(P(1:floor(0.8*n)));
wolffd@0 17 Xtest = X(:,P((1+floor(0.8*n)):end));
wolffd@0 18 Ytest = Y(P((1+floor(0.8*n)):end));
wolffd@0 19
wolffd@0 20
wolffd@0 21 % Optimize W for AUC
wolffd@0 22 C = 1e-2;
wolffd@0 23 display(sprintf('Training with C=%.2e, Delta=mAP', C));
wolffd@0 24 [W, Xi, Diagnostics] = mlr_train(Xtrain, Ytrain, C, 'map');
wolffd@0 25 % [W, Xi, Diagnostics] = mlr_train_primal(Xtrain, Ytrain, C, 'map');
wolffd@0 26
wolffd@0 27 display('Test performance in the native (normalized) metric');
wolffd@0 28 mlr_test(eye(d), 3, Xtrain, Ytrain, Xtest, Ytest)
wolffd@0 29
wolffd@0 30 display('Test performance with MLR metric');
wolffd@0 31 mlr_test(W, 3, Xtrain, Ytrain, Xtest, Ytest)
wolffd@0 32
wolffd@0 33 % Scatter-plot
wolffd@0 34 figure;
wolffd@0 35 subplot(1,2,1), drawData(eye(d), Xtrain, Ytrain, Xtest, Ytest), title('Native metric (z-scored)');
wolffd@0 36 subplot(1,2,2), drawData(W, Xtrain, Ytrain, Xtest, Ytest), title('Learned metric (MLR-mAP)');
wolffd@0 37
wolffd@0 38 Diagnostics
wolffd@0 39
wolffd@0 40 end
wolffd@0 41
wolffd@0 42
wolffd@0 43 function drawData(W, Xtrain, Ytrain, Xtest, Ytest);
wolffd@0 44
wolffd@0 45 n = length(Ytrain);
wolffd@0 46 m = length(Ytest);
wolffd@0 47
wolffd@0 48 if size(W,2) == 1
wolffd@0 49 W = diag(W);
wolffd@0 50 end
wolffd@0 51 % PCA the learned metric
wolffd@0 52 Z = [Xtrain Xtest];
wolffd@0 53 A = Z' * W * Z;
wolffd@0 54 [v,d] = eig(A);
wolffd@0 55
wolffd@0 56 L = (d.^0.5) * v';
wolffd@0 57 L = L(1:2,:);
wolffd@0 58
wolffd@0 59 % Draw training points
wolffd@0 60 hold on;
wolffd@0 61 trmarkers = {'b+', 'r+', 'g+'};
wolffd@0 62 tsmarkers = {'bo', 'ro', 'go'};
wolffd@0 63 for i = min(Ytrain):max(Ytrain)
wolffd@0 64 points = find(Ytrain == i);
wolffd@0 65 scatter(L(1,points), L(2,points), trmarkers{i});
wolffd@0 66 points = n + find(Ytest == i);
wolffd@0 67 scatter(L(1,points), L(2,points), tsmarkers{i});
wolffd@0 68 end
wolffd@0 69 legend({'Training', 'Test'});
wolffd@0 70 end