wolffd@0
|
1 function [dPsi, M, SO_time] = cuttingPlaneFull(k, X, W, Ypos, Yneg, batchSize, SAMPLES, ClassScores)
|
wolffd@0
|
2 %
|
wolffd@0
|
3 % [dPsi, M, SO_time] = cuttingPlaneFull(k, X, W, Yp, Yn, batchSize, SAMPLES, ClassScores)
|
wolffd@0
|
4 %
|
wolffd@0
|
5 % k = k parameter for the SO
|
wolffd@0
|
6 % X = d*n data matrix
|
wolffd@0
|
7 % W = d*d PSD metric
|
wolffd@0
|
8 % Yp = cell-array of relevant results for each point
|
wolffd@0
|
9 % Yn = cell-array of irrelevant results for each point
|
wolffd@0
|
10 % batchSize = number of points to use in the constraint batch
|
wolffd@0
|
11 % SAMPLES = indices of valid points to include in the batch
|
wolffd@0
|
12 % ClassScores = structure for synthetic constraints
|
wolffd@0
|
13 %
|
wolffd@0
|
14 % dPsi = dPsi vector for this batch
|
wolffd@0
|
15 % M = mean loss on this batch
|
wolffd@0
|
16 % SO_time = time spent in separation oracle
|
wolffd@0
|
17
|
wolffd@0
|
18 global SO PSI DISTANCE CPGRADIENT;
|
wolffd@0
|
19
|
wolffd@0
|
20 [d,n,m] = size(X);
|
wolffd@0
|
21 D = DISTANCE(W, X);
|
wolffd@0
|
22
|
wolffd@0
|
23 M = 0;
|
wolffd@0
|
24 S = zeros(n);
|
wolffd@0
|
25 dIndex = sub2ind([n n], 1:n, 1:n);
|
wolffd@0
|
26
|
wolffd@0
|
27 SO_time = 0;
|
wolffd@0
|
28
|
wolffd@0
|
29 if isempty(ClassScores)
|
wolffd@0
|
30 TS = zeros(batchSize, n);
|
wolffd@0
|
31 parfor i = 1:batchSize
|
wolffd@0
|
32 if i <= length(SAMPLES)
|
wolffd@0
|
33 j = SAMPLES(i);
|
wolffd@0
|
34
|
wolffd@0
|
35 if isempty(Ypos{j})
|
wolffd@0
|
36 continue;
|
wolffd@0
|
37 end
|
wolffd@0
|
38 if isempty(Yneg)
|
wolffd@0
|
39 % Construct a negative set
|
wolffd@0
|
40 Ynegative = setdiff((1:n)', [j ; Ypos{j}]);
|
wolffd@0
|
41 else
|
wolffd@0
|
42 Ynegative = Yneg{j};
|
wolffd@0
|
43 end
|
wolffd@0
|
44 SO_start = tic();
|
wolffd@0
|
45 [yi, li] = SO(j, D, Ypos{j}, Ynegative, k);
|
wolffd@0
|
46 SO_time = SO_time + toc(SO_start);
|
wolffd@0
|
47
|
wolffd@0
|
48 M = M + li /batchSize;
|
wolffd@0
|
49 TS(i,:) = PSI(j, yi', n, Ypos{j}, Ynegative);
|
wolffd@0
|
50 end
|
wolffd@0
|
51 end
|
wolffd@0
|
52
|
wolffd@0
|
53 % Reconstruct the S matrix from TS
|
wolffd@0
|
54 S(SAMPLES,:) = TS;
|
wolffd@0
|
55 S(:,SAMPLES) = S(:,SAMPLES) + TS';
|
wolffd@0
|
56 S(dIndex) = S(dIndex) - sum(TS, 1);
|
wolffd@0
|
57 else
|
wolffd@0
|
58
|
wolffd@0
|
59 % Do it class-wise for efficiency
|
wolffd@0
|
60 batchSize = 0;
|
wolffd@0
|
61 for j = 1:length(ClassScores.classes)
|
wolffd@0
|
62 c = ClassScores.classes(j);
|
wolffd@0
|
63 points = find(ClassScores.Y == c);
|
wolffd@0
|
64
|
wolffd@0
|
65 Yneg = find(ClassScores.Yneg{j});
|
wolffd@0
|
66 yp = ClassScores.Ypos{j};
|
wolffd@0
|
67
|
wolffd@0
|
68 if length(points) <= 1
|
wolffd@0
|
69 continue;
|
wolffd@0
|
70 end
|
wolffd@0
|
71
|
wolffd@0
|
72 batchSize = batchSize + length(points);
|
wolffd@0
|
73 TS = zeros(length(points), n);
|
wolffd@0
|
74 parfor x = 1:length(points)
|
wolffd@0
|
75 i = points(x);
|
wolffd@0
|
76 yl = yp;
|
wolffd@0
|
77 yl(i) = 0;
|
wolffd@0
|
78 Ypos = find(yl);
|
wolffd@0
|
79 SO_start = tic();
|
wolffd@0
|
80 [yi, li] = SO(i, D, Ypos, Yneg, k);
|
wolffd@0
|
81 SO_time = SO_time + toc(SO_start);
|
wolffd@0
|
82
|
wolffd@0
|
83 M = M + li;
|
wolffd@0
|
84 TS(x,:) = PSI(i, yi', n, Ypos, Yneg);
|
wolffd@0
|
85 end
|
wolffd@0
|
86
|
wolffd@0
|
87 S(points,:) = S(points,:) + TS;
|
wolffd@0
|
88 S(:,points) = S(:,points) + TS';
|
wolffd@0
|
89 S(dIndex) = S(dIndex) - sum(TS, 1);
|
wolffd@0
|
90 end
|
wolffd@0
|
91 M = M / batchSize;
|
wolffd@0
|
92 end
|
wolffd@0
|
93
|
wolffd@0
|
94 dPsi = CPGRADIENT(X, S, batchSize);
|
wolffd@0
|
95
|
wolffd@0
|
96 end
|