wolffd@0
|
1 function minima = som_dmatminima(sM,U,Ne)
|
wolffd@0
|
2
|
wolffd@0
|
3 %SOM_DMATMINIMA Find clusters based on local minima of U-matrix.
|
wolffd@0
|
4 %
|
wolffd@0
|
5 % minima = som_dmatminima(sM,[U],[Ne])
|
wolffd@0
|
6 %
|
wolffd@0
|
7 % Input and output arguments ([]'s are optional):
|
wolffd@0
|
8 % sM (struct) map struct
|
wolffd@0
|
9 % U (matrix) the distance matrix from which minima is
|
wolffd@0
|
10 % searched from
|
wolffd@0
|
11 % size msize(1) x ... x msize(end) or
|
wolffd@0
|
12 % 2*msize(1)-1 x 2*msize(2)-1 or
|
wolffd@0
|
13 % munits x 1
|
wolffd@0
|
14 % Ne (matrix) neighborhood connections matrix
|
wolffd@0
|
15 %
|
wolffd@0
|
16 % minima (vector) indeces of the map units where locla minima of
|
wolffd@0
|
17 % of U-matrix (or other distance matrix occured)
|
wolffd@0
|
18 %
|
wolffd@0
|
19 % See also KMEANS_CLUSTERS, SOM_CLLINKAGE, SOM_CLSTRUCT.
|
wolffd@0
|
20
|
wolffd@0
|
21 % Copyright (c) 2000 by Juha Vesanto
|
wolffd@0
|
22 % Contributed to SOM Toolbox on June 16th, 2000 by Juha Vesanto
|
wolffd@0
|
23 % http://www.cis.hut.fi/projects/somtoolbox/
|
wolffd@0
|
24
|
wolffd@0
|
25 % Version 2.0beta juuso 220800
|
wolffd@0
|
26
|
wolffd@0
|
27 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
wolffd@0
|
28
|
wolffd@0
|
29 % map
|
wolffd@0
|
30 if isstruct(sM),
|
wolffd@0
|
31 switch sM.type,
|
wolffd@0
|
32 case 'som_map', M = sM.codebook; mask = sM.mask;
|
wolffd@0
|
33 case 'som_data', M = sM.data; mask = ones(size(M,2),1);
|
wolffd@0
|
34 end
|
wolffd@0
|
35 else
|
wolffd@0
|
36 M = sM; mask = ones(size(M,2),1);
|
wolffd@0
|
37 end
|
wolffd@0
|
38 [munits dim] = size(M);
|
wolffd@0
|
39
|
wolffd@0
|
40 % distances between map units
|
wolffd@0
|
41 if nargin<2, U = []; end
|
wolffd@0
|
42
|
wolffd@0
|
43 % neighborhoods
|
wolffd@0
|
44 if nargin<3, Ne = som_neighbors(sM); end
|
wolffd@0
|
45
|
wolffd@0
|
46 % distance matrix
|
wolffd@0
|
47 if nargin<2 | isempty(U), U = som_dmat(sM,Ne,'median'); end
|
wolffd@0
|
48 if prod(size(U))>munits, U = U(1:2:size(U,1),1:2:size(U,2)); end
|
wolffd@0
|
49 U = U(:);
|
wolffd@0
|
50 if length(U) ~= munits, error('Distance matrix has incorrect size.'); end
|
wolffd@0
|
51
|
wolffd@0
|
52 % find local minima
|
wolffd@0
|
53 minima = [];
|
wolffd@0
|
54 for i=1:munits,
|
wolffd@0
|
55 ne = find(Ne(i,:));
|
wolffd@0
|
56 if all(U(i)<=U(ne)) & ~anycommon(ne,minima), minima(end+1)=i; end
|
wolffd@0
|
57 end
|
wolffd@0
|
58
|
wolffd@0
|
59 return;
|
wolffd@0
|
60
|
wolffd@0
|
61 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
wolffd@0
|
62
|
wolffd@0
|
63 function t = anycommon(i1,i2)
|
wolffd@0
|
64 if isempty(i1) | isempty(i2), t = 0;
|
wolffd@0
|
65 else
|
wolffd@0
|
66 m = max(max(i1),max(i2));
|
wolffd@0
|
67 t = any(sparse(i1,1,1,m,1) & sparse(i2,1,1,m,1));
|
wolffd@0
|
68 end
|
wolffd@0
|
69 return;
|
wolffd@0
|
70
|