wolffd@0
|
1 function dmat = som_dmat(sM,Ne,mode)
|
wolffd@0
|
2
|
wolffd@0
|
3 %SOM_DMAT Find distance to neighbors for each map unit.
|
wolffd@0
|
4 %
|
wolffd@0
|
5 % dmat = som_dmat(sM,[Ne],[mode])
|
wolffd@0
|
6 %
|
wolffd@0
|
7 % Input and output arguments ([]'s are optional):
|
wolffd@0
|
8 % sM (struct) map or data struct
|
wolffd@0
|
9 % (matrix) data matrix, size n x dim
|
wolffd@0
|
10 % [Ne] (matrix) neighborhood connections matrix
|
wolffd@0
|
11 % (string) 'Nk' (on map) or 'kNN' (any vector set)
|
wolffd@0
|
12 % where k = some number, e.g. 'N1' or '10NN'
|
wolffd@0
|
13 % (empty) use default
|
wolffd@0
|
14 % [mode] (string) 'min', 'median', 'mean', 'max', or
|
wolffd@0
|
15 % some arbitrary scalar function of
|
wolffd@0
|
16 % a set of vectors
|
wolffd@0
|
17 %
|
wolffd@0
|
18 % dmat (vector) size n x 1, distance associated with each vector
|
wolffd@0
|
19 %
|
wolffd@0
|
20 % See also KMEANS_CLUSTERS, SOM_CLLINKAGE, SOM_CLSTRUCT.
|
wolffd@0
|
21
|
wolffd@0
|
22 % Copyright (c) 2000 by Juha Vesanto
|
wolffd@0
|
23 % Contributed to SOM Toolbox on June 16th, 2000 by Juha Vesanto
|
wolffd@0
|
24 % http://www.cis.hut.fi/projects/somtoolbox/
|
wolffd@0
|
25
|
wolffd@0
|
26 % Version 2.0beta juuso 220800
|
wolffd@0
|
27
|
wolffd@0
|
28 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
wolffd@0
|
29
|
wolffd@0
|
30 % map
|
wolffd@0
|
31 if isstruct(sM),
|
wolffd@0
|
32 switch sM.type,
|
wolffd@0
|
33 case 'som_map', M = sM.codebook; mask = sM.mask;
|
wolffd@0
|
34 case 'som_data', M = sM.data; mask = ones(size(M,2),1);
|
wolffd@0
|
35 end
|
wolffd@0
|
36 else
|
wolffd@0
|
37 M = sM; mask = ones(size(M,2),1);
|
wolffd@0
|
38 end
|
wolffd@0
|
39 [n dim] = size(M);
|
wolffd@0
|
40
|
wolffd@0
|
41 % neighborhoods
|
wolffd@0
|
42 if nargin<2 | isempty(Ne), Ne = som_neighbors(sM);
|
wolffd@0
|
43 elseif ischar(Ne), Ne = som_neighbors(sM,Ne);
|
wolffd@0
|
44 end
|
wolffd@0
|
45 l = size(Ne,1); Ne([0:l-1]*l+[1:l]) = 0; % set diagonal elements = 0
|
wolffd@0
|
46
|
wolffd@0
|
47 % mode
|
wolffd@0
|
48 if nargin<3 | isempty(mode), mode = 'median'; end
|
wolffd@0
|
49 calc = sprintf('%s(x)',mode);
|
wolffd@0
|
50
|
wolffd@0
|
51 % distances
|
wolffd@0
|
52 dmat = zeros(n,1);
|
wolffd@0
|
53 for i=1:n,
|
wolffd@0
|
54 ne = find(Ne(i,:));
|
wolffd@0
|
55 if any(ne),
|
wolffd@0
|
56 [dummy,x] = som_bmus(M(ne,:),M(i,:),[1:length(ne)],mask);
|
wolffd@0
|
57 dmat(i) = eval(calc);
|
wolffd@0
|
58 else
|
wolffd@0
|
59 dmat(i) = NaN;
|
wolffd@0
|
60 end
|
wolffd@0
|
61 end
|
wolffd@0
|
62
|
wolffd@0
|
63 return;
|
wolffd@0
|
64
|
wolffd@0
|
65 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
wolffd@0
|
66
|
wolffd@0
|
67
|
wolffd@0
|
68
|