wolffd@0
|
1 function varargout = mirflux(orig,varargin)
|
wolffd@0
|
2 % f = mirflux(x) measures distance between successive frames.
|
wolffd@0
|
3 % First argument:
|
wolffd@0
|
4 % If x is a spectrum, this corresponds to spectral flux.
|
wolffd@0
|
5 % But the flux of any other data can be computed as well.
|
wolffd@0
|
6 % If x is an audio file or audio signal, the spectral flux is
|
wolffd@0
|
7 % computed by default.
|
wolffd@0
|
8 % Optional arguments:
|
wolffd@0
|
9 % f = mirflux(x,'Frame',...) specifies the frame parameters, if x is
|
wolffd@0
|
10 % not already decomposed into frames. Default values are frame
|
wolffd@0
|
11 % length of .2 seconds and hop factor of 1.3.
|
wolffd@0
|
12 % f = mirflux(x,'Dist',d) specifies the distance between
|
wolffd@0
|
13 % successive frames: (IF 'COMPLEX': DISTANCE = 'CITY' ALWAYS)
|
wolffd@0
|
14 % d = 'Euclidian': Euclidian distance (Default)
|
wolffd@0
|
15 % d = 'City': City-block distance
|
wolffd@0
|
16 % d = 'Cosine': Cosine distance (or normalized correlation)
|
wolffd@0
|
17 % f = mirflux(...,'Inc'): Only positive difference between frames are
|
wolffd@0
|
18 % summed, in order to focus on increase of energy solely.
|
wolffd@0
|
19 % f = mirflux(...,'Complex'), for spectral flux, combines use of
|
wolffd@0
|
20 % energy and phase information (Bello et al, 2004).
|
wolffd@0
|
21 % f = mirflux(...,'Halfwave'): performs a half-wave rectification on
|
wolffd@0
|
22 % the result.
|
wolffd@0
|
23 % f = mirflux(...,'Median',l,C): removes small spurious peaks by
|
wolffd@0
|
24 % subtracting to the result its median filtering. The median
|
wolffd@0
|
25 % filter computes the point-wise median inside a window of length
|
wolffd@0
|
26 % l (in seconds), that includes a same number of previous and
|
wolffd@0
|
27 % next samples. C is a scaling factor whose purpose is to
|
wolffd@0
|
28 % artificially rise the curve slightly above the steady state of
|
wolffd@0
|
29 % the signal. If no parameters are given, the default values are:
|
wolffd@0
|
30 % l = 0.2 s. and C = 1.3
|
wolffd@0
|
31 % f = mirflux(...,'Median',l,C,'Halfwave'): The scaled median
|
wolffd@0
|
32 % filtering is designed to be succeeded by the half-wave
|
wolffd@0
|
33 % rectification process in order to select peaks above the
|
wolffd@0
|
34 % dynamic threshold calculated with the help of the median
|
wolffd@0
|
35 % filter. The resulting signal is called "detection function"
|
wolffd@0
|
36 % (Alonso, David, Richard, 2004). To ensure accurate detection,
|
wolffd@0
|
37 % the length l of the median filter must be longer than the
|
wolffd@0
|
38 % average width of the peaks of the detection function.
|
wolffd@0
|
39 %
|
wolffd@0
|
40 % (Bello et al, 2004) Juan P. Bello, Chris Duxbury, Mike Davies, and Mark
|
wolffd@0
|
41 % Sandler, On the Use of Phase and Energy for Musical Onset Detection in
|
wolffd@0
|
42 % the Complex Domain, IEEE SIGNAL PROCESSING LETTERS, VOL. 11, NO. 6,
|
wolffd@0
|
43 % JUNE 2004
|
wolffd@0
|
44
|
wolffd@0
|
45 dist.key = 'Dist';
|
wolffd@0
|
46 dist.type = 'String';
|
wolffd@0
|
47 dist.choice = {'Euclidian','City','Cosine'}; %PDIST???? (euclidean)
|
wolffd@0
|
48 dist.default = 'Euclidian';
|
wolffd@0
|
49 option.dist = dist;
|
wolffd@0
|
50
|
wolffd@0
|
51 inc.key = 'Inc';
|
wolffd@0
|
52 inc.type = 'Boolean';
|
wolffd@0
|
53 inc.default = 0;
|
wolffd@0
|
54 option.inc = inc;
|
wolffd@0
|
55
|
wolffd@0
|
56 complex.key = 'Complex';
|
wolffd@0
|
57 complex.type = 'Boolean';
|
wolffd@0
|
58 complex.default = 0;
|
wolffd@0
|
59 option.complex = complex;
|
wolffd@0
|
60
|
wolffd@0
|
61 h.key = 'Halfwave';
|
wolffd@0
|
62 h.type = 'Boolean';
|
wolffd@0
|
63 h.default = 0;
|
wolffd@0
|
64 h.when = 'After';
|
wolffd@0
|
65 option.h = h;
|
wolffd@0
|
66
|
wolffd@0
|
67 median.key = 'Median';
|
wolffd@0
|
68 median.type = 'Integer';
|
wolffd@0
|
69 median.number = 2;
|
wolffd@0
|
70 median.default = [0 0];
|
wolffd@0
|
71 median.keydefault = [.2 1.3];
|
wolffd@0
|
72 median.when = 'After';
|
wolffd@0
|
73 option.median = median;
|
wolffd@0
|
74
|
wolffd@0
|
75 frame.key = 'Frame';
|
wolffd@0
|
76 frame.type = 'Integer';
|
wolffd@0
|
77 frame.number = 2;
|
wolffd@0
|
78 frame.default = [.05 .5];
|
wolffd@0
|
79 option.frame = frame;
|
wolffd@0
|
80
|
wolffd@0
|
81 specif.option = option;
|
wolffd@0
|
82
|
wolffd@0
|
83 varargout = mirfunction(@mirflux,orig,varargin,nargout,specif,@init,@main);
|
wolffd@0
|
84
|
wolffd@0
|
85
|
wolffd@0
|
86 function [x type] = init(x,option)
|
wolffd@0
|
87 if isamir(x,'miraudio')
|
wolffd@0
|
88 if isframed(x)
|
wolffd@0
|
89 x = mirspectrum(x);
|
wolffd@0
|
90 else
|
wolffd@0
|
91 x = mirspectrum(x,'Frame',option.frame.length.val,option.frame.length.unit,...
|
wolffd@0
|
92 option.frame.hop.val,option.frame.hop.unit);
|
wolffd@0
|
93 end
|
wolffd@0
|
94 end
|
wolffd@0
|
95 if isa(x,'mirdesign')
|
wolffd@0
|
96 x = set(x,'Overlap',1);
|
wolffd@0
|
97 end
|
wolffd@0
|
98 type = 'mirscalar';
|
wolffd@0
|
99
|
wolffd@0
|
100
|
wolffd@0
|
101 function f = main(s,option,postoption)
|
wolffd@0
|
102 if iscell(s)
|
wolffd@0
|
103 s = s{1};
|
wolffd@0
|
104 end
|
wolffd@0
|
105 t = get(s,'Title');
|
wolffd@0
|
106 if isa(s,'mirscalar') && ...
|
wolffd@0
|
107 (strcmp(t,'Harmonic Change Detection Function') || ...
|
wolffd@0
|
108 (length(t)>4 && strcmp(t(end-3:end),'flux')) || ...
|
wolffd@0
|
109 (length(t)>5 && strcmp(t(end-4:end-1),'flux')))
|
wolffd@0
|
110 if not(isempty(postoption))
|
wolffd@0
|
111 f = modif(s,postoption);
|
wolffd@0
|
112 end
|
wolffd@0
|
113 else
|
wolffd@0
|
114 if isa(s,'mirspectrum')
|
wolffd@0
|
115 t = 'Spectral';
|
wolffd@0
|
116 end
|
wolffd@0
|
117 m = get(s,'Data');
|
wolffd@0
|
118 if option.complex
|
wolffd@0
|
119 if not(isa(s,'mirspectrum'))
|
wolffd@0
|
120 error('ERROR IN MIRFLUX: ''Complex'' option only defined for spectral flux.');
|
wolffd@0
|
121 end
|
wolffd@0
|
122 ph = get(s,'Phase');
|
wolffd@0
|
123 end
|
wolffd@0
|
124 param.complex = option.complex;
|
wolffd@0
|
125 param.inc = option.inc;
|
wolffd@0
|
126 fp = get(s,'FramePos');
|
wolffd@0
|
127 if strcmp(t,'Tonal centroid')
|
wolffd@0
|
128 t = 'Harmonic Change Detection Function';
|
wolffd@0
|
129 else
|
wolffd@0
|
130 t = [t,' flux'];
|
wolffd@0
|
131 end
|
wolffd@0
|
132 disp(['Computing ' t '...'])
|
wolffd@0
|
133 ff = cell(1,length(m));
|
wolffd@0
|
134 newsr = cell(1,length(m));
|
wolffd@0
|
135 dist = str2func(option.dist);
|
wolffd@0
|
136 %[tmp s] = gettmp(s); %get(s,'Tmp');
|
wolffd@0
|
137 for h = 1:length(m)
|
wolffd@0
|
138 ff{h} = cell(1,length(m{h}));
|
wolffd@0
|
139 if not(iscell(m{h}))
|
wolffd@0
|
140 m{h} = {m{h}};
|
wolffd@0
|
141 end
|
wolffd@0
|
142 for i = 1:length(m{h})
|
wolffd@0
|
143 mi = m{h}{i};
|
wolffd@0
|
144 if size(mi,3) > 1 && size(mi,1) == 1
|
wolffd@0
|
145 mi = reshape(mi,size(mi,2),size(mi,3))';
|
wolffd@0
|
146 end
|
wolffd@0
|
147 if option.complex
|
wolffd@0
|
148 phi = ph{h}{i};
|
wolffd@0
|
149 end
|
wolffd@0
|
150 fpi = fp{h}{i};
|
wolffd@0
|
151 %if 0 %not(isempty(tmp)) && isstruct(tmp) && isfield(tmp,'mi')
|
wolffd@0
|
152 % mi = [tmp.mi mi];
|
wolffd@0
|
153 % fpi = [tmp.fpi fpi];
|
wolffd@0
|
154 %end
|
wolffd@0
|
155 nc = size(mi,2);
|
wolffd@0
|
156 np = size(mi,3);
|
wolffd@0
|
157 if nc == 1
|
wolffd@0
|
158 warning('WARNING IN MIRFLUX: Flux can only be computed on signal decomposed into frames.');
|
wolffd@0
|
159 ff{h}{i} = NaN(1,1,np);
|
wolffd@0
|
160 else
|
wolffd@0
|
161 if option.complex
|
wolffd@0
|
162 fl = zeros(1,nc-2,np);
|
wolffd@0
|
163 for k = 1:np
|
wolffd@0
|
164 d = diff(phi(:,:,k),2,2);
|
wolffd@0
|
165 d = d/(2*pi) - round(d/(2*pi));
|
wolffd@0
|
166 g = sqrt(mi(:,3:end,k).^2 + mi(:,2:(end-1),k).^2 ...
|
wolffd@0
|
167 - 2.*mi(:,3:end,k)...
|
wolffd@0
|
168 .*mi(:,2:(end-1),k)...
|
wolffd@0
|
169 .*cos(d));
|
wolffd@0
|
170 fl(1,:,k) = sum(g);
|
wolffd@0
|
171 end
|
wolffd@0
|
172 fp{h}{i} = fpi(:,3:end);
|
wolffd@0
|
173 else
|
wolffd@0
|
174 fl = zeros(1,nc-1,np);
|
wolffd@0
|
175 for k = 1:np
|
wolffd@0
|
176 for j = 1:nc-1
|
wolffd@0
|
177 fl(1,j,k) = dist(mi(:,j,k),mi(:,j+1,k),option.inc);
|
wolffd@0
|
178 end
|
wolffd@0
|
179 end
|
wolffd@0
|
180 fp{h}{i} = fpi(:,2:end);
|
wolffd@0
|
181 end
|
wolffd@0
|
182 ff{h}{i} = fl;
|
wolffd@0
|
183 %tmp.mi = mi(:,end,:);
|
wolffd@0
|
184 %tmp.fpi = fpi(:,end,:);
|
wolffd@0
|
185 end
|
wolffd@0
|
186 end
|
wolffd@0
|
187 %tmp = [];
|
wolffd@0
|
188 if size(fpi,2)<2
|
wolffd@0
|
189 newsr{h} = 0;
|
wolffd@0
|
190 else
|
wolffd@0
|
191 newsr{h} = 1/(fpi(1,2)-fpi(1,1));
|
wolffd@0
|
192 end
|
wolffd@0
|
193 end
|
wolffd@0
|
194 f = mirscalar(s,'Data',ff,'FramePos',fp,'Sampling',newsr,...
|
wolffd@0
|
195 'Title',t,'Parameter',param); %,'Tmp',tmp);
|
wolffd@0
|
196 %f = settmp(f,tmp);
|
wolffd@0
|
197 if not(isempty(postoption))
|
wolffd@0
|
198 f = modif(f,postoption);
|
wolffd@0
|
199 end
|
wolffd@0
|
200 end
|
wolffd@0
|
201
|
wolffd@0
|
202
|
wolffd@0
|
203 function f = modif(f,option)
|
wolffd@0
|
204 fl = get(f,'Data');
|
wolffd@0
|
205 r = get(f,'Sampling');
|
wolffd@0
|
206 for h = 1:length(fl)
|
wolffd@0
|
207 for i = 1:length(fl{h})
|
wolffd@0
|
208 fli = fl{h}{i};
|
wolffd@0
|
209 nc = size(fli,2);
|
wolffd@0
|
210 np = size(fli,3);
|
wolffd@0
|
211 if option.median(1)
|
wolffd@0
|
212 ffi = zeros(1,nc,np);
|
wolffd@0
|
213 lr = round(option.median(1)*r{i});
|
wolffd@0
|
214 for k = 1:np
|
wolffd@0
|
215 for j = 1:nc
|
wolffd@0
|
216 ffi(:,j,k) = fli(:,j,k) - ...
|
wolffd@0
|
217 option.median(2) * median(fli(:,max(1,j-lr):min(nc-1,j+lr),k));
|
wolffd@0
|
218 end
|
wolffd@0
|
219 end
|
wolffd@0
|
220 fli = ffi;
|
wolffd@0
|
221 end
|
wolffd@0
|
222 if option.h
|
wolffd@0
|
223 fli = hwr(fli);
|
wolffd@0
|
224 end
|
wolffd@0
|
225 fl{h}{i} = fli;
|
wolffd@0
|
226 end
|
wolffd@0
|
227 end
|
wolffd@0
|
228 f = set(f,'Data',fl);
|
wolffd@0
|
229
|
wolffd@0
|
230
|
wolffd@0
|
231 function y = Euclidian(mi,mj,inc)
|
wolffd@0
|
232 if inc
|
wolffd@0
|
233 y = sqrt(sum(max(0,(mj-mi)).^2));
|
wolffd@0
|
234 else
|
wolffd@0
|
235 y = sqrt(sum((mj-mi).^2));
|
wolffd@0
|
236 end
|
wolffd@0
|
237
|
wolffd@0
|
238
|
wolffd@0
|
239 function y = City(mi,mj,inc)
|
wolffd@0
|
240 if inc
|
wolffd@0
|
241 y = sum(max(0,(mj-mi)));
|
wolffd@0
|
242 else
|
wolffd@0
|
243 y = sum(abs(mj-mi));
|
wolffd@0
|
244 end
|
wolffd@0
|
245
|
wolffd@0
|
246
|
wolffd@0
|
247 function d = Cosine(r,s,inc)
|
wolffd@0
|
248 nr = sqrt(r'*r);
|
wolffd@0
|
249 ns = sqrt(s'*s);
|
wolffd@0
|
250 if or(nr == 0, ns == 0);
|
wolffd@0
|
251 d = 1;
|
wolffd@0
|
252 else
|
wolffd@0
|
253 d = 1 - r'*s/nr/ns;
|
wolffd@0
|
254 end |