wolffd@0
|
1 function varargout = mireventdensity(x,varargin)
|
wolffd@0
|
2 % e = mireventdensity(x) estimate the mean frequency of events (i.e., how
|
wolffd@0
|
3 % many note onsets per second) in the temporal data x.
|
wolffd@0
|
4
|
wolffd@0
|
5 % Optional arguments: Option1, Option2
|
wolffd@0
|
6 % Tuomas Eerola, 14.08.2008
|
wolffd@0
|
7 %
|
wolffd@0
|
8 normal.type = 'String';
|
wolffd@0
|
9 normal.choice = {'Option1','Option2'};
|
wolffd@0
|
10 normal.default = 'Option1';
|
wolffd@0
|
11 option.normal = normal;
|
wolffd@0
|
12
|
wolffd@0
|
13 frame.key = 'Frame';
|
wolffd@0
|
14 frame.type = 'Integer';
|
wolffd@0
|
15 frame.number = 2;
|
wolffd@0
|
16 frame.default = [0 0];
|
wolffd@0
|
17 frame.keydefault = [10 1];
|
wolffd@0
|
18 option.frame = frame;
|
wolffd@0
|
19
|
wolffd@0
|
20 specif.option = option;
|
wolffd@0
|
21
|
wolffd@0
|
22 specif.defaultframelength = 1.00;
|
wolffd@0
|
23 specif.defaultframehop = 0.5;
|
wolffd@0
|
24
|
wolffd@0
|
25 %specif.eachchunk = 'Normal';
|
wolffd@0
|
26 specif.combinechunk = {'Average','Concat'};
|
wolffd@0
|
27
|
wolffd@0
|
28 varargout = mirfunction(@mireventdensity,x,varargin,nargout,specif,@init,@main);
|
wolffd@0
|
29
|
wolffd@0
|
30
|
wolffd@0
|
31 function [x type] = init(x,option)
|
wolffd@0
|
32 if not(isamir(x,'mirenvelope'))
|
wolffd@0
|
33 if option.frame.length.val
|
wolffd@0
|
34 x = mironsets(x,'Klapuri99', 'Frame',option.frame.length.val,...
|
wolffd@0
|
35 option.frame.length.unit,...
|
wolffd@0
|
36 option.frame.hop.val,...
|
wolffd@0
|
37 option.frame.hop.unit);
|
wolffd@0
|
38 else
|
wolffd@0
|
39 x = mironsets(x,'Klapuri99');
|
wolffd@0
|
40 end
|
wolffd@0
|
41 end
|
wolffd@0
|
42 type = 'mirscalar';
|
wolffd@0
|
43
|
wolffd@0
|
44
|
wolffd@0
|
45 function e = main(o,option,postoption)
|
wolffd@0
|
46 if iscell(o)
|
wolffd@0
|
47 o = o{1};
|
wolffd@0
|
48 end
|
wolffd@0
|
49 sr = get(o,'Sampling');
|
wolffd@0
|
50 p = mirpeaks(o); %%%%<<<<<<< MORE OPTIONS HERE
|
wolffd@0
|
51 pv = get(p,'PeakVal');
|
wolffd@0
|
52 v = mircompute(@algo,pv,o,option,sr);
|
wolffd@0
|
53 e = mirscalar(o,'Data',v,'Title','Event density','Unit','per second');
|
wolffd@0
|
54 e = {e o};
|
wolffd@0
|
55
|
wolffd@0
|
56
|
wolffd@0
|
57 function e = algo(pv,o,option,sr)
|
wolffd@0
|
58 nc = size(o,2);
|
wolffd@0
|
59 nch = size(o,3);
|
wolffd@0
|
60 e = zeros(1,nc,nch);
|
wolffd@0
|
61 % for i = 1:nch
|
wolffd@0
|
62 % for j = 1:nc
|
wolffd@0
|
63 % if option.root
|
wolffd@0
|
64 % e(1,j,i) = norm(d(:,j,i));
|
wolffd@0
|
65 % else
|
wolffd@0
|
66 % disp('do the calc...')
|
wolffd@0
|
67 % % e(1,j,i) = d(:,j,i)'*d(:,j,i);
|
wolffd@0
|
68 % %tmp = mironsets(d,'Filterbank',10,'Contrast',0.1); % Change by TE, was only FB=20, no other params
|
wolffd@0
|
69 % e2 = mirpeaks(e)
|
wolffd@0
|
70 % [o1,o2] = mirgetdata(e);
|
wolffd@0
|
71 % e(1,j,i) = length(o2)/mirgetdata(mirlength(d));
|
wolffd@0
|
72 % end
|
wolffd@0
|
73 % end
|
wolffd@0
|
74 % end
|
wolffd@0
|
75 for i = 1:nch
|
wolffd@0
|
76 for j = 1:nc
|
wolffd@0
|
77 e(1,j,i) = length(pv{1,j,i});
|
wolffd@0
|
78 if strcmpi(option.normal,'Option1')
|
wolffd@0
|
79 e(1,j,i) = e(1,j,i) *sr/size(o,1);
|
wolffd@0
|
80 elseif strcmpi(option.normal,'Option2')
|
wolffd@0
|
81 pvs = pv{1};
|
wolffd@0
|
82 high_pvs = length(find(mean(pvs)>pvs));
|
wolffd@0
|
83 e(1,j,i) = high_pvs(1,j,i) *sr/size(o,1); % only those which are larger than mean
|
wolffd@0
|
84 end
|
wolffd@0
|
85 end
|
wolffd@0
|
86 end
|
wolffd@0
|
87
|
wolffd@0
|
88
|
wolffd@0
|
89
|
wolffd@0
|
90 %function [y orig] = eachchunk(orig,option,missing,postchunk)
|
wolffd@0
|
91 %y = mireventdensity(orig,option);
|
wolffd@0
|
92
|
wolffd@0
|
93
|
wolffd@0
|
94 %function y = combinechunk(old,new)
|
wolffd@0
|
95 %do = mirgetdata(old);
|
wolffd@0
|
96 %dn = mirgetdata(new);
|
wolffd@0
|
97 %y = set(old,'ChunkData',do+dn);
|