wolffd@0
|
1 function varargout = mirmfcc(orig,varargin)
|
wolffd@0
|
2 % c = mirmfcc(a) finds the Mel frequency cepstral coefficients (ceps),
|
wolffd@0
|
3 % a numerical description of the spectrum envelope.
|
wolffd@0
|
4 %
|
wolffd@0
|
5 % Requires the Auditory Toolbox.
|
wolffd@0
|
6 %
|
wolffd@0
|
7 % Optional arguments:
|
wolffd@0
|
8 % c = mirmfcc(...,'Rank',N) computes the coefficients of rank(s) N
|
wolffd@0
|
9 % (default: N = 1:13).
|
wolffd@0
|
10 % If a is a frame decomposition, the temporal evolution of the MFCC,
|
wolffd@0
|
11 % along the successive frames, is returned. In this case, a second
|
wolffd@0
|
12 % option is available:
|
wolffd@0
|
13 % mirmfcc(...,'Delta',d) performs d temporal differentiations of
|
wolffd@0
|
14 % the coefficients, also called delta-MFCC (for d = 1) or
|
wolffd@0
|
15 % delta-delta-MFCC (for d = 2).
|
wolffd@0
|
16 % mirmfcc(...,'Delta') corresponds to mirmfcc(...,'Delta',1)
|
wolffd@0
|
17 % Optional arguments related to the delta computation:
|
wolffd@0
|
18 % mirmfcc(...,'Radius',r) specifies, for each frame, the number of
|
wolffd@0
|
19 % successive and previous neighbouring frames taken into
|
wolffd@0
|
20 % consideration for the least-square approximation.
|
wolffd@0
|
21 % Usually 1 or 2.
|
wolffd@0
|
22 % Default value: 2.
|
wolffd@0
|
23
|
wolffd@0
|
24 nbbands.key = 'Bands';
|
wolffd@0
|
25 nbbands.type = 'Integer';
|
wolffd@0
|
26 nbbands.default = 40;
|
wolffd@0
|
27 option.nbbands = nbbands;
|
wolffd@0
|
28
|
wolffd@0
|
29 rank.key = 'Rank';
|
wolffd@0
|
30 rank.type = 'Integer';
|
wolffd@0
|
31 rank.default = 1:13;
|
wolffd@0
|
32 option.rank = rank;
|
wolffd@0
|
33
|
wolffd@0
|
34 delta.key = 'Delta';
|
wolffd@0
|
35 delta.type = 'Integer';
|
wolffd@0
|
36 delta.default = 0;
|
wolffd@0
|
37 delta.keydefault = 1;
|
wolffd@0
|
38 option.delta = delta;
|
wolffd@0
|
39
|
wolffd@0
|
40 radius.key = 'Radius';
|
wolffd@0
|
41 radius.type = 'Integer';
|
wolffd@0
|
42 radius.default = 2;
|
wolffd@0
|
43 option.radius = radius;
|
wolffd@0
|
44
|
wolffd@0
|
45 specif.option = option;
|
wolffd@0
|
46
|
wolffd@0
|
47 varargout = mirfunction(@mirmfcc,orig,varargin,nargout,specif,@init,@main);
|
wolffd@0
|
48
|
wolffd@0
|
49
|
wolffd@0
|
50 function [x type] = init(x,option)
|
wolffd@0
|
51 if isamir(x,'miraudio') || isamir(x,'mirspectrum')
|
wolffd@0
|
52 x = mirspectrum(x,'Mel','log','Bands',option.nbbands);
|
wolffd@0
|
53 end
|
wolffd@0
|
54 type = 'mirmfcc';
|
wolffd@0
|
55
|
wolffd@0
|
56
|
wolffd@0
|
57 function c = main(orig,option,postoption)
|
wolffd@0
|
58 if iscell(orig)
|
wolffd@0
|
59 orig = orig{1};
|
wolffd@0
|
60 end
|
wolffd@0
|
61 if isa(orig,'mirmfcc')
|
wolffd@0
|
62 c = orig;
|
wolffd@0
|
63 if option.rank
|
wolffd@0
|
64 magn = get(c,'Data');
|
wolffd@0
|
65 rank = get(c,'Rank');
|
wolffd@0
|
66 for h = 1:length(magn)
|
wolffd@0
|
67 for k = 1:length(magn{h})
|
wolffd@0
|
68 m = magn{h}{k};
|
wolffd@0
|
69 r = rank{h}{k};
|
wolffd@0
|
70 r1 = r(:,1,1);
|
wolffd@0
|
71 range = find(ismember(r1,option.rank));
|
wolffd@0
|
72 magn{h}{k} = m(range,:,:);
|
wolffd@0
|
73 rank{h}{k} = r(range,:,:);
|
wolffd@0
|
74 end
|
wolffd@0
|
75 end
|
wolffd@0
|
76 c = set(c,'Data',magn,'Rank',rank);
|
wolffd@0
|
77 end
|
wolffd@0
|
78 c = modif(c,option);
|
wolffd@0
|
79 else
|
wolffd@0
|
80 c.delta = 0;
|
wolffd@0
|
81 %disp('Computing Mel frequency cepstral coefficients...');
|
wolffd@0
|
82 e = get(orig,'Magnitude');
|
wolffd@0
|
83
|
wolffd@0
|
84 % The following is largely based on the source code from Auditory Toolbox
|
wolffd@0
|
85 % (A part that I could not call directly from MIRtoolbox)
|
wolffd@0
|
86
|
wolffd@0
|
87 % (Malcolm Slaney, August 1993, (c) 1998 Interval Research Corporation)
|
wolffd@0
|
88
|
wolffd@0
|
89 try
|
wolffd@0
|
90 MakeERBFilters(1,1,1); % Just to be sure that the Auditory Toolbox is installed
|
wolffd@0
|
91 catch
|
wolffd@0
|
92 error(['ERROR IN MIRFILTERBANK: Auditory Toolbox needs to be installed.']);
|
wolffd@0
|
93 end
|
wolffd@0
|
94
|
wolffd@0
|
95 dc = cell(1,length(e));
|
wolffd@0
|
96 rk = cell(1,length(e));
|
wolffd@0
|
97 for h = 1:length(e)
|
wolffd@0
|
98 dc{h} = cell(1,length(e{h}));
|
wolffd@0
|
99 rk{h} = cell(1,length(e{h}));
|
wolffd@0
|
100 for i = 1:length(e{h})
|
wolffd@0
|
101 ei = e{h}{i};
|
wolffd@0
|
102 totalFilters = size(ei,3); %Number of mel bands.
|
wolffd@0
|
103
|
wolffd@0
|
104 % Figure out Discrete Cosine Transform. We want a matrix
|
wolffd@0
|
105 % dct(i,j) which is totalFilters x cepstralCoefficients in size.
|
wolffd@0
|
106 % The i,j component is given by
|
wolffd@0
|
107 % cos( i * (j+0.5)/totalFilters pi )
|
wolffd@0
|
108 % where we have assumed that i and j start at 0.
|
wolffd@0
|
109 mfccDCTMatrix = 1/sqrt(totalFilters/2)*...
|
wolffd@0
|
110 cos(option.rank' * ...
|
wolffd@0
|
111 (2*(0:(totalFilters-1))+1) * ...
|
wolffd@0
|
112 pi/2/totalFilters);
|
wolffd@0
|
113 rank0 = find(option.rank == 0);
|
wolffd@0
|
114 mfccDCTMatrix(rank0,:) = mfccDCTMatrix(rank0,:) * sqrt(2)/2;
|
wolffd@0
|
115 ceps = zeros(size(mfccDCTMatrix,1),size(ei,2));
|
wolffd@0
|
116 for j = 1:size(ei,2)
|
wolffd@0
|
117 ceps(:,j) = mfccDCTMatrix * permute(ei(1,j,:),[3 1 2]);
|
wolffd@0
|
118 end
|
wolffd@0
|
119 dc{h}{i} = ceps;
|
wolffd@0
|
120 rk{h}{i} = repmat(option.rank(:),[1 size(ceps,2) size(ceps,3)]);
|
wolffd@0
|
121 end
|
wolffd@0
|
122 end
|
wolffd@0
|
123 c = class(c,'mirmfcc',mirdata(orig));
|
wolffd@0
|
124 c = purgedata(c);
|
wolffd@0
|
125 c = set(c,'Title','MFCC','Abs','coefficient ranks','Ord','magnitude',...
|
wolffd@0
|
126 'Data',dc,'Rank',rk);
|
wolffd@0
|
127 c = modif(c,option);
|
wolffd@0
|
128 end
|
wolffd@0
|
129 c = {c orig};
|
wolffd@0
|
130
|
wolffd@0
|
131
|
wolffd@0
|
132 function c = modif(c,option)
|
wolffd@0
|
133 d = get(c,'Data');
|
wolffd@0
|
134 fp = get(c,'FramePos');
|
wolffd@0
|
135 t = get(c,'Title');
|
wolffd@0
|
136 if option.delta
|
wolffd@0
|
137 M = option.radius;
|
wolffd@0
|
138 for k = 1:option.delta
|
wolffd@0
|
139 for h = 1:length(d)
|
wolffd@0
|
140 for i = 1:length(d{h})
|
wolffd@0
|
141 nc = size(d{h}{i},2)-2*M;
|
wolffd@0
|
142 di = zeros(size(d{h}{i},1),nc);
|
wolffd@0
|
143 for j = 1:M
|
wolffd@0
|
144 di = di + j * (d{h}{i}(:,M+j+(1:nc)) ...
|
wolffd@0
|
145 - d{h}{i}(:,M-j+(1:nc)));
|
wolffd@0
|
146 end
|
wolffd@0
|
147 di = di / 2 / sum((1:M).^2); % MULTIPLY BY 2 INSTEAD OF SQUARE FOR NORMALIZATION ?
|
wolffd@0
|
148 d{h}{i} = di;
|
wolffd@0
|
149 fp{h}{i} = fp{h}{i}(:,M+1:end-M);
|
wolffd@0
|
150 end
|
wolffd@0
|
151 end
|
wolffd@0
|
152 t = ['Delta-',t];
|
wolffd@0
|
153 end
|
wolffd@0
|
154 end
|
wolffd@0
|
155 c = set(c,'Data',d,'FramePos',fp,'Delta',get(c,'Delta')+option.delta,...
|
wolffd@0
|
156 'Title',t); |