annotate toolboxes/MIRtoolbox1.3.2/AuditoryToolbox/WhiteVowel.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
rev   line source
wolffd@0 1 function [output,aCoeff] = WhiteVowel(data,sr,L,pos)
wolffd@0 2 % function [output,aCoeff] = WhiteVowel(data,sr,L,pos)
wolffd@0 3 %
wolffd@0 4 % Speech is often described as having spectral peaks or formants which
wolffd@0 5 % identify the phonetic signal. An interesting experiment, first proposed by
wolffd@0 6 % XXX, filters a speech signal to remove all the formant information at one
wolffd@0 7 % time during the speech. If there are no formant peaks, how can the speech
wolffd@0 8 % be understood? It turns out that processing, much like RASTA, means that
wolffd@0 9 % relative changes in spectrum are the most important, thus the speech signal
wolffd@0 10 % is understood because the formant transitions carry the information. This
wolffd@0 11 % gives speech an important transparency due
wolffd@0 12 %
wolffd@0 13 % This function takes a speech signal (data) with a given sampling rate (sr).
wolffd@0 14 % It then finds the L-order LPC filter that describes the speech at the given
wolffd@0 15 % position (pos ms). The entire speech signal is then filtered with the
wolffd@0 16 % inverse of the LPC filter, effectively turning the speech spectrum at the
wolffd@0 17 % given time white (flat).
wolffd@0 18
wolffd@0 19 % Chris Pal, Interval, May 1997
wolffd@0 20 % (c) 1998 Interval Research Corporation
wolffd@0 21
wolffd@0 22 fr = 20; fs = 30; preemp = .9378; % LPC defaults
wolffd@0 23
wolffd@0 24 [row col] = size(data);
wolffd@0 25 if col==1 data=data'; end
wolffd@0 26
wolffd@0 27 nframe = 0;
wolffd@0 28 msfr = round(sr/1000*fr);
wolffd@0 29 msfs = round(sr/1000*fs);
wolffd@0 30 duration = length(data);
wolffd@0 31 msoverlap = msfs - msfr;
wolffd@0 32 frameNumber = floor(pos/1000*sr/msfr);
wolffd@0 33
wolffd@0 34 frameStart = round(pos/1000*sr - msfs/2);
wolffd@0 35 frameData = data(frameStart:(frameStart+msfs-1));
wolffd@0 36 aCoeff = proclpc(frameData, sr, L, fr, fs, preemp);
wolffd@0 37 % Calculate the filter response
wolffd@0 38 % by evaluating the z-transform
wolffd@0 39 spec=lpc_spec(aCoeff);
wolffd@0 40 subplot(2,3,1);
wolffd@0 41 plot(spec);
wolffd@0 42 title('LPC Spectral Slice');
wolffd@0 43 ylabel('Original')
wolffd@0 44
wolffd@0 45 % Now do the actual whitening filter
wolffd@0 46 output = filter(aCoeff,1,data)';
wolffd@0 47
wolffd@0 48 frameData = output(frameStart:(frameStart+msfs-1));
wolffd@0 49 bCoeff = proclpc(frameData, sr, L, fr, fs, preemp);
wolffd@0 50 spec=lpc_spec(bCoeff);
wolffd@0 51 subplot(2,3,4);
wolffd@0 52 plot(spec);
wolffd@0 53 ylabel('Whitened'); xlabel('FFT Bin');
wolffd@0 54
wolffd@0 55 % 256-DFT
wolffd@0 56 origSpec = 20*log10(abs(specgram(data,512,sr,msfs,msoverlap)));
wolffd@0 57 subplot(2,3,2),imagesc(origSpec); axis xy; colormap(1-gray);
wolffd@0 58 title('Spectrogram');
wolffd@0 59
wolffd@0 60 synSpec = 20*log10(abs(specgram(output,512,sr,msfs,msoverlap)));
wolffd@0 61 subplot(2,3,5),imagesc(synSpec); axis xy; colormap(1-gray);
wolffd@0 62 xlabel('Frame #');
wolffd@0 63
wolffd@0 64 origloc = origSpec(:,frameNumber); origloc=origloc-max(origloc);origmin=min(origloc);
wolffd@0 65 subplot(2,3,3),plot(origloc),title('Spectrogram'),
wolffd@0 66 axis([1 length(origloc) origmin 0]);
wolffd@0 67
wolffd@0 68 filloc = synSpec(:,frameNumber); filloc=filloc-max(filloc);
wolffd@0 69 subplot(2,3,6),plot(filloc);ylabel('db');
wolffd@0 70 axis([1 length(origloc) origmin 0]);
wolffd@0 71 xlabel('FFT Bin');
wolffd@0 72
wolffd@0 73 function spec=lpc_spec(aCoeff)
wolffd@0 74 gain=0;
wolffd@0 75 cft=0:(1/255):1;
wolffd@0 76 for index=1:size(aCoeff,1)
wolffd@0 77 gain = gain + aCoeff(index)*exp(-i*2*pi*cft).^index;
wolffd@0 78 end
wolffd@0 79 gain = abs(1./gain);
wolffd@0 80 spec = 20*log10(gain(1:128))';