wolffd@0
|
1 function [net, options] = glmtrain_weighted(net, options, x, t, eso_w, alfa)
|
wolffd@0
|
2 %GLMTRAIN Specialised training of generalized linear model
|
wolffd@0
|
3 %
|
wolffd@0
|
4 % Description
|
wolffd@0
|
5 % NET = GLMTRAIN(NET, OPTIONS, X, T) uses the iterative reweighted
|
wolffd@0
|
6 % least squares (IRLS) algorithm to set the weights in the generalized
|
wolffd@0
|
7 % linear model structure NET. This is a more efficient alternative to
|
wolffd@0
|
8 % using GLMERR and GLMGRAD and a non-linear optimisation routine
|
wolffd@0
|
9 % through NETOPT. Note that for linear outputs, a single pass through
|
wolffd@0
|
10 % the algorithm is all that is required, since the error function is
|
wolffd@0
|
11 % quadratic in the weights. The error function value at the final set
|
wolffd@0
|
12 % of weights is returned in OPTIONS(8). Each row of X corresponds to
|
wolffd@0
|
13 % one input vector and each row of T corresponds to one target vector.
|
wolffd@0
|
14 %
|
wolffd@0
|
15 % The optional parameters have the following interpretations.
|
wolffd@0
|
16 %
|
wolffd@0
|
17 % OPTIONS(1) is set to 1 to display error values during training. If
|
wolffd@0
|
18 % OPTIONS(1) is set to 0, then only warning messages are displayed. If
|
wolffd@0
|
19 % OPTIONS(1) is -1, then nothing is displayed.
|
wolffd@0
|
20 %
|
wolffd@0
|
21 % OPTIONS(2) is a measure of the precision required for the value of
|
wolffd@0
|
22 % the weights W at the solution.
|
wolffd@0
|
23 %
|
wolffd@0
|
24 % OPTIONS(3) is a measure of the precision required of the objective
|
wolffd@0
|
25 % function at the solution. Both this and the previous condition must
|
wolffd@0
|
26 % be satisfied for termination.
|
wolffd@0
|
27 %
|
wolffd@0
|
28 % OPTIONS(5) is set to 1 if an approximation to the Hessian (which
|
wolffd@0
|
29 % assumes that all outputs are independent) is used for softmax
|
wolffd@0
|
30 % outputs. With the default value of 0 the exact Hessian (which is more
|
wolffd@0
|
31 % expensive to compute) is used.
|
wolffd@0
|
32 %
|
wolffd@0
|
33 % OPTIONS(14) is the maximum number of iterations for the IRLS
|
wolffd@0
|
34 % algorithm; default 100.
|
wolffd@0
|
35 %
|
wolffd@0
|
36 % See also
|
wolffd@0
|
37 % GLM, GLMERR, GLMGRAD
|
wolffd@0
|
38 %
|
wolffd@0
|
39
|
wolffd@0
|
40 % Copyright (c) Christopher M Bishop, Ian T Nabney (1996, 1997)
|
wolffd@0
|
41
|
wolffd@0
|
42 % Check arguments for consistency
|
wolffd@0
|
43 errstring = consist(net, 'glm', x, t);
|
wolffd@0
|
44 if ~errstring
|
wolffd@0
|
45 error(errstring);
|
wolffd@0
|
46 end
|
wolffd@0
|
47
|
wolffd@0
|
48 if(~options(14))
|
wolffd@0
|
49 options(14) = 100;
|
wolffd@0
|
50 end
|
wolffd@0
|
51
|
wolffd@0
|
52 display = options(1);
|
wolffd@0
|
53
|
wolffd@0
|
54 test = (options(2) | options(3)); % Do we need to test for termination?
|
wolffd@0
|
55
|
wolffd@0
|
56 ndata = size(x, 1);
|
wolffd@0
|
57
|
wolffd@0
|
58 inputs = [x ones(ndata, 1)]; % Add a column of ones for the bias
|
wolffd@0
|
59
|
wolffd@0
|
60 % Use weighted iterative reweighted least squares (WIRLS)
|
wolffd@0
|
61 e = ones(1, net.nin+1);
|
wolffd@0
|
62 for n = 1:options(14)
|
wolffd@0
|
63
|
wolffd@0
|
64 %switch net.actfn
|
wolffd@0
|
65 switch net.outfn
|
wolffd@0
|
66 case 'softmax'
|
wolffd@0
|
67 if n == 1
|
wolffd@0
|
68 p = (t + (1/size(t, 2)))/2; % Initialise model: ensure that row sum of p is one no matter
|
wolffd@0
|
69 act = log(p./(1-p)); % how many classes there are
|
wolffd@0
|
70 end
|
wolffd@0
|
71 if options(5) == 1 | n == 1
|
wolffd@0
|
72 link_deriv = p.*(1-p);
|
wolffd@0
|
73 weights = sqrt(link_deriv); % sqrt of weights
|
wolffd@0
|
74 if (min(min(weights)) < eps)
|
wolffd@0
|
75 fprintf(1, 'Warning: ill-conditioned weights in glmtrain\n')
|
wolffd@0
|
76 return
|
wolffd@0
|
77 end
|
wolffd@0
|
78 z = act + (t-p)./link_deriv;
|
wolffd@0
|
79 % Treat each output independently with relevant set of weights
|
wolffd@0
|
80 for j = 1:net.nout
|
wolffd@0
|
81 indep = inputs.*(weights(:,j)*e);
|
wolffd@0
|
82 dep = z(:,j).*weights(:,j);
|
wolffd@0
|
83 temp = indep\dep;
|
wolffd@0
|
84 net.w1(:,j) = temp(1:net.nin);
|
wolffd@0
|
85 net.b1(j) = temp(net.nin+1);
|
wolffd@0
|
86 end
|
wolffd@0
|
87 [err, edata, eprior, p, act] = glmerr_weighted(net, x, t, eso_w);
|
wolffd@0
|
88 if n == 1
|
wolffd@0
|
89 errold = err;
|
wolffd@0
|
90 wold = netpak(net);
|
wolffd@0
|
91 else
|
wolffd@0
|
92 w = netpak(net);
|
wolffd@0
|
93 end
|
wolffd@0
|
94 else
|
wolffd@0
|
95 % Exact method of calculation after w first initialised
|
wolffd@0
|
96 % Start by working out Hessian
|
wolffd@0
|
97 Hessian = glmhess_weighted(net, x, t, eso_w);
|
wolffd@0
|
98 temp = p-t;
|
wolffd@0
|
99 for m=1:ndata,
|
wolffd@0
|
100 temp(m,:)=eso_w(m,1)*temp(m,:);
|
wolffd@0
|
101 end
|
wolffd@0
|
102 gw1 = x'*(temp);
|
wolffd@0
|
103 gb1 = sum(temp, 1);
|
wolffd@0
|
104 gradient = [gw1(:)', gb1];
|
wolffd@0
|
105 % Now compute modification to weights
|
wolffd@0
|
106 deltaw = -gradient*pinv(Hessian);
|
wolffd@0
|
107 w = wold + alfa*deltaw;
|
wolffd@0
|
108 net = glmunpak(net, w);
|
wolffd@0
|
109 [err, edata, eprior, p] = glmerr_weighted(net, x, t, eso_w);
|
wolffd@0
|
110 end
|
wolffd@0
|
111 otherwise
|
wolffd@0
|
112 error(['Unknown activation function ', net.actfn]);
|
wolffd@0
|
113 end % switch' end
|
wolffd@0
|
114
|
wolffd@0
|
115 if options(1)==1
|
wolffd@0
|
116 fprintf(1, 'Cycle %4d Error %11.6f\n', n, err)
|
wolffd@0
|
117 end
|
wolffd@0
|
118 % Test for termination
|
wolffd@0
|
119 % Terminate if error increases
|
wolffd@0
|
120 if err > errold
|
wolffd@0
|
121 errold = err;
|
wolffd@0
|
122 w = wold;
|
wolffd@0
|
123 options(8) = err;
|
wolffd@0
|
124 fprintf(1, 'Error has increased: terminating\n')
|
wolffd@0
|
125 return;
|
wolffd@0
|
126 end
|
wolffd@0
|
127 if test & n > 1
|
wolffd@0
|
128 if (max(abs(w - wold)) < options(2) & abs(err-errold) < options(3))
|
wolffd@0
|
129 options(8) = err;
|
wolffd@0
|
130 return;
|
wolffd@0
|
131 else
|
wolffd@0
|
132 errold = err;
|
wolffd@0
|
133 wold = w;
|
wolffd@0
|
134 end
|
wolffd@0
|
135 end
|
wolffd@0
|
136 end
|
wolffd@0
|
137
|
wolffd@0
|
138 options(8) = err;
|
wolffd@0
|
139 if (options(1) > 0)
|
wolffd@0
|
140 disp('Warning: Maximum number of iterations has been exceeded');
|
wolffd@0
|
141 end
|