wolffd@0
|
1 function [a, z, n2] = rbffwd(net, x)
|
wolffd@0
|
2 %RBFFWD Forward propagation through RBF network with linear outputs.
|
wolffd@0
|
3 %
|
wolffd@0
|
4 % Description
|
wolffd@0
|
5 % A = RBFFWD(NET, X) takes a network data structure NET and a matrix X
|
wolffd@0
|
6 % of input vectors and forward propagates the inputs through the
|
wolffd@0
|
7 % network to generate a matrix A of output vectors. Each row of X
|
wolffd@0
|
8 % corresponds to one input vector and each row of A contains the
|
wolffd@0
|
9 % corresponding output vector. The activation function that is used is
|
wolffd@0
|
10 % determined by NET.ACTFN.
|
wolffd@0
|
11 %
|
wolffd@0
|
12 % [A, Z, N2] = RBFFWD(NET, X) also generates a matrix Z of the hidden
|
wolffd@0
|
13 % unit activations where each row corresponds to one pattern. These
|
wolffd@0
|
14 % hidden unit activations represent the design matrix for the RBF. The
|
wolffd@0
|
15 % matrix N2 is the squared distances between each basis function centre
|
wolffd@0
|
16 % and each pattern in which each row corresponds to a data point.
|
wolffd@0
|
17 %
|
wolffd@0
|
18 % See also
|
wolffd@0
|
19 % RBF, RBFERR, RBFGRAD, RBFPAK, RBFTRAIN, RBFUNPAK
|
wolffd@0
|
20 %
|
wolffd@0
|
21
|
wolffd@0
|
22 % Copyright (c) Ian T Nabney (1996-2001)
|
wolffd@0
|
23
|
wolffd@0
|
24 % Check arguments for consistency
|
wolffd@0
|
25 errstring = consist(net, 'rbf', x);
|
wolffd@0
|
26 if ~isempty(errstring);
|
wolffd@0
|
27 error(errstring);
|
wolffd@0
|
28 end
|
wolffd@0
|
29
|
wolffd@0
|
30 [ndata, data_dim] = size(x);
|
wolffd@0
|
31
|
wolffd@0
|
32 % Calculate squared norm matrix, of dimension (ndata, ncentres)
|
wolffd@0
|
33 n2 = dist2(x, net.c);
|
wolffd@0
|
34
|
wolffd@0
|
35 % Switch on activation function type
|
wolffd@0
|
36 switch net.actfn
|
wolffd@0
|
37
|
wolffd@0
|
38 case 'gaussian' % Gaussian
|
wolffd@0
|
39 % Calculate width factors: net.wi contains squared widths
|
wolffd@0
|
40 wi2 = ones(ndata, 1) * (2 .* net.wi);
|
wolffd@0
|
41
|
wolffd@0
|
42 % Now compute the activations
|
wolffd@0
|
43 z = exp(-(n2./wi2));
|
wolffd@0
|
44
|
wolffd@0
|
45 case 'tps' % Thin plate spline
|
wolffd@0
|
46 z = n2.*log(n2+(n2==0));
|
wolffd@0
|
47
|
wolffd@0
|
48 case 'r4logr' % r^4 log r
|
wolffd@0
|
49 z = n2.*n2.*log(n2+(n2==0));
|
wolffd@0
|
50
|
wolffd@0
|
51 otherwise
|
wolffd@0
|
52 error('Unknown activation function in rbffwd')
|
wolffd@0
|
53 end
|
wolffd@0
|
54
|
wolffd@0
|
55 a = z*net.w2 + ones(ndata, 1)*net.b2; |