wolffd@0
|
1 function [e, edata, eprior] = rbferr(net, x, t)
|
wolffd@0
|
2 %RBFERR Evaluate error function for RBF network.
|
wolffd@0
|
3 %
|
wolffd@0
|
4 % Description
|
wolffd@0
|
5 % E = RBFERR(NET, X, T) takes a network data structure NET together
|
wolffd@0
|
6 % with a matrix X of input vectors and a matrix T of target vectors,
|
wolffd@0
|
7 % and evaluates the appropriate error function E depending on
|
wolffd@0
|
8 % NET.OUTFN. Each row of X corresponds to one input vector and each
|
wolffd@0
|
9 % row of T contains the corresponding target vector.
|
wolffd@0
|
10 %
|
wolffd@0
|
11 % [E, EDATA, EPRIOR] = RBFERR(NET, X, T) additionally returns the data
|
wolffd@0
|
12 % and prior components of the error, assuming a zero mean Gaussian
|
wolffd@0
|
13 % prior on the weights with inverse variance parameters ALPHA and BETA
|
wolffd@0
|
14 % taken from the network data structure NET.
|
wolffd@0
|
15 %
|
wolffd@0
|
16 % See also
|
wolffd@0
|
17 % RBF, RBFFWD, RBFGRAD, RBFPAK, RBFTRAIN, RBFUNPAK
|
wolffd@0
|
18 %
|
wolffd@0
|
19
|
wolffd@0
|
20 % Copyright (c) Ian T Nabney (1996-2001)
|
wolffd@0
|
21
|
wolffd@0
|
22 % Check arguments for consistency
|
wolffd@0
|
23 switch net.outfn
|
wolffd@0
|
24 case 'linear'
|
wolffd@0
|
25 errstring = consist(net, 'rbf', x, t);
|
wolffd@0
|
26 case 'neuroscale'
|
wolffd@0
|
27 errstring = consist(net, 'rbf', x);
|
wolffd@0
|
28 otherwise
|
wolffd@0
|
29 error(['Unknown output function ', net.outfn]);
|
wolffd@0
|
30 end
|
wolffd@0
|
31 if ~isempty(errstring);
|
wolffd@0
|
32 error(errstring);
|
wolffd@0
|
33 end
|
wolffd@0
|
34
|
wolffd@0
|
35 switch net.outfn
|
wolffd@0
|
36 case 'linear'
|
wolffd@0
|
37 y = rbffwd(net, x);
|
wolffd@0
|
38 edata = 0.5*sum(sum((y - t).^2));
|
wolffd@0
|
39 case 'neuroscale'
|
wolffd@0
|
40 y = rbffwd(net, x);
|
wolffd@0
|
41 y_dist = sqrt(dist2(y, y));
|
wolffd@0
|
42 % Take t as target distance matrix
|
wolffd@0
|
43 edata = 0.5.*(sum(sum((t-y_dist).^2)));
|
wolffd@0
|
44 otherwise
|
wolffd@0
|
45 error(['Unknown output function ', net.outfn]);
|
wolffd@0
|
46 end
|
wolffd@0
|
47
|
wolffd@0
|
48 % Compute Bayesian regularised error
|
wolffd@0
|
49 [e, edata, eprior] = errbayes(net, edata);
|
wolffd@0
|
50
|