annotate toolboxes/FullBNT-1.0.7/netlab3.3/rbf.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
rev   line source
wolffd@0 1 function net = rbf(nin, nhidden, nout, rbfunc, outfunc, prior, beta)
wolffd@0 2 %RBF Creates an RBF network with specified architecture
wolffd@0 3 %
wolffd@0 4 % Description
wolffd@0 5 % NET = RBF(NIN, NHIDDEN, NOUT, RBFUNC) constructs and initialises a
wolffd@0 6 % radial basis function network returning a data structure NET. The
wolffd@0 7 % weights are all initialised with a zero mean, unit variance normal
wolffd@0 8 % distribution, with the exception of the variances, which are set to
wolffd@0 9 % one. This makes use of the Matlab function RANDN and so the seed for
wolffd@0 10 % the random weight initialization can be set using RANDN('STATE', S)
wolffd@0 11 % where S is the seed value. The activation functions are defined in
wolffd@0 12 % terms of the distance between the data point and the corresponding
wolffd@0 13 % centre. Note that the functions are computed to a convenient
wolffd@0 14 % constant multiple: for example, the Gaussian is not normalised.
wolffd@0 15 % (Normalisation is not needed as the function outputs are linearly
wolffd@0 16 % combined in the next layer.)
wolffd@0 17 %
wolffd@0 18 % The fields in NET are
wolffd@0 19 % type = 'rbf'
wolffd@0 20 % nin = number of inputs
wolffd@0 21 % nhidden = number of hidden units
wolffd@0 22 % nout = number of outputs
wolffd@0 23 % nwts = total number of weights and biases
wolffd@0 24 % actfn = string defining hidden unit activation function:
wolffd@0 25 % 'gaussian' for a radially symmetric Gaussian function.
wolffd@0 26 % 'tps' for r^2 log r, the thin plate spline function.
wolffd@0 27 % 'r4logr' for r^4 log r.
wolffd@0 28 % outfn = string defining output error function:
wolffd@0 29 % 'linear' for linear outputs (default) and SoS error.
wolffd@0 30 % 'neuroscale' for Sammon stress measure.
wolffd@0 31 % c = centres
wolffd@0 32 % wi = squared widths (null for rlogr and tps)
wolffd@0 33 % w2 = second layer weight matrix
wolffd@0 34 % b2 = second layer bias vector
wolffd@0 35 %
wolffd@0 36 % NET = RBF(NIN, NHIDDEN, NOUT, RBFUND, OUTFUNC) allows the user to
wolffd@0 37 % specify the type of error function to be used. The field OUTFN is
wolffd@0 38 % set to the value of this string. Linear outputs (for regression
wolffd@0 39 % problems) and Neuroscale outputs (for topographic mappings) are
wolffd@0 40 % supported.
wolffd@0 41 %
wolffd@0 42 % NET = RBF(NIN, NHIDDEN, NOUT, RBFUNC, OUTFUNC, PRIOR, BETA), in which
wolffd@0 43 % PRIOR is a scalar, allows the field NET.ALPHA in the data structure
wolffd@0 44 % NET to be set, corresponding to a zero-mean isotropic Gaussian prior
wolffd@0 45 % with inverse variance with value PRIOR. Alternatively, PRIOR can
wolffd@0 46 % consist of a data structure with fields ALPHA and INDEX, allowing
wolffd@0 47 % individual Gaussian priors to be set over groups of weights in the
wolffd@0 48 % network. Here ALPHA is a column vector in which each element
wolffd@0 49 % corresponds to a separate group of weights, which need not be
wolffd@0 50 % mutually exclusive. The membership of the groups is defined by the
wolffd@0 51 % matrix INDX in which the columns correspond to the elements of ALPHA.
wolffd@0 52 % Each column has one element for each weight in the matrix, in the
wolffd@0 53 % order defined by the function RBFPAK, and each element is 1 or 0
wolffd@0 54 % according to whether the weight is a member of the corresponding
wolffd@0 55 % group or not. A utility function RBFPRIOR is provided to help in
wolffd@0 56 % setting up the PRIOR data structure.
wolffd@0 57 %
wolffd@0 58 % NET = RBF(NIN, NHIDDEN, NOUT, FUNC, PRIOR, BETA) also sets the
wolffd@0 59 % additional field NET.BETA in the data structure NET, where beta
wolffd@0 60 % corresponds to the inverse noise variance.
wolffd@0 61 %
wolffd@0 62 % See also
wolffd@0 63 % RBFERR, RBFFWD, RBFGRAD, RBFPAK, RBFTRAIN, RBFUNPAK
wolffd@0 64 %
wolffd@0 65
wolffd@0 66 % Copyright (c) Ian T Nabney (1996-2001)
wolffd@0 67
wolffd@0 68 net.type = 'rbf';
wolffd@0 69 net.nin = nin;
wolffd@0 70 net.nhidden = nhidden;
wolffd@0 71 net.nout = nout;
wolffd@0 72
wolffd@0 73 % Check that function is an allowed type
wolffd@0 74 actfns = {'gaussian', 'tps', 'r4logr'};
wolffd@0 75 outfns = {'linear', 'neuroscale'};
wolffd@0 76 if (strcmp(rbfunc, actfns)) == 0
wolffd@0 77 error('Undefined activation function.')
wolffd@0 78 else
wolffd@0 79 net.actfn = rbfunc;
wolffd@0 80 end
wolffd@0 81 if nargin <= 4
wolffd@0 82 net.outfn = outfns{1};
wolffd@0 83 elseif (strcmp(outfunc, outfns) == 0)
wolffd@0 84 error('Undefined output function.')
wolffd@0 85 else
wolffd@0 86 net.outfn = outfunc;
wolffd@0 87 end
wolffd@0 88
wolffd@0 89 % Assume each function has a centre and a single width parameter, and that
wolffd@0 90 % hidden layer to output weights include a bias. Only the Gaussian function
wolffd@0 91 % requires a width
wolffd@0 92 net.nwts = nin*nhidden + (nhidden + 1)*nout;
wolffd@0 93 if strcmp(rbfunc, 'gaussian')
wolffd@0 94 % Extra weights for width parameters
wolffd@0 95 net.nwts = net.nwts + nhidden;
wolffd@0 96 end
wolffd@0 97
wolffd@0 98 if nargin > 5
wolffd@0 99 if isstruct(prior)
wolffd@0 100 net.alpha = prior.alpha;
wolffd@0 101 net.index = prior.index;
wolffd@0 102 elseif size(prior) == [1 1]
wolffd@0 103 net.alpha = prior;
wolffd@0 104 else
wolffd@0 105 error('prior must be a scalar or a structure');
wolffd@0 106 end
wolffd@0 107 if nargin > 6
wolffd@0 108 net.beta = beta;
wolffd@0 109 end
wolffd@0 110 end
wolffd@0 111
wolffd@0 112 w = randn(1, net.nwts);
wolffd@0 113 net = rbfunpak(net, w);
wolffd@0 114
wolffd@0 115 % Make widths equal to one
wolffd@0 116 if strcmp(rbfunc, 'gaussian')
wolffd@0 117 net.wi = ones(1, nhidden);
wolffd@0 118 end
wolffd@0 119
wolffd@0 120 if strcmp(net.outfn, 'neuroscale')
wolffd@0 121 net.mask = rbfprior(rbfunc, nin, nhidden, nout);
wolffd@0 122 end
wolffd@0 123