wolffd@0
|
1 function [h1, h2] = mlphint(net);
|
wolffd@0
|
2 %MLPHINT Plot Hinton diagram for 2-layer feed-forward network.
|
wolffd@0
|
3 %
|
wolffd@0
|
4 % Description
|
wolffd@0
|
5 %
|
wolffd@0
|
6 % MLPHINT(NET) takes a network structure NET and plots the Hinton
|
wolffd@0
|
7 % diagram comprised of two figure windows, one displaying the first-
|
wolffd@0
|
8 % layer weights and biases, and one displaying the second-layer weights
|
wolffd@0
|
9 % and biases.
|
wolffd@0
|
10 %
|
wolffd@0
|
11 % [H1, H2] = MLPHINT(NET) also returns handles H1 and H2 to the
|
wolffd@0
|
12 % figures which can be used, for instance, to delete the figures when
|
wolffd@0
|
13 % they are no longer needed.
|
wolffd@0
|
14 %
|
wolffd@0
|
15 % To print the figure correctly, you should call SET(H,
|
wolffd@0
|
16 % 'INVERTHARDCOPY', 'ON') before printing.
|
wolffd@0
|
17 %
|
wolffd@0
|
18 % See also
|
wolffd@0
|
19 % DEMHINT, HINTMAT, MLP, MLPPAK, MLPUNPAK
|
wolffd@0
|
20 %
|
wolffd@0
|
21
|
wolffd@0
|
22 % Copyright (c) Ian T Nabney (1996-2001)
|
wolffd@0
|
23
|
wolffd@0
|
24 % Set scale to be up to 0.9 of maximum absolute weight value, where scale
|
wolffd@0
|
25 % defined so that area of box proportional to weight value.
|
wolffd@0
|
26
|
wolffd@0
|
27 % Use no more than 640x480 pixels
|
wolffd@0
|
28 xmax = 640; ymax = 480;
|
wolffd@0
|
29
|
wolffd@0
|
30 % Offset bottom left hand corner
|
wolffd@0
|
31 x01 = 40; y01 = 40;
|
wolffd@0
|
32 x02 = 80; y02 = 80;
|
wolffd@0
|
33
|
wolffd@0
|
34 % Need to allow 5 pixels border for window frame: but 30 at top
|
wolffd@0
|
35 border = 5;
|
wolffd@0
|
36 top_border = 30;
|
wolffd@0
|
37
|
wolffd@0
|
38 ymax = ymax - top_border;
|
wolffd@0
|
39 xmax = xmax - border;
|
wolffd@0
|
40
|
wolffd@0
|
41 % First layer
|
wolffd@0
|
42
|
wolffd@0
|
43 wb1 = [net.w1; net.b1];
|
wolffd@0
|
44 [xvals, yvals, color] = hintmat(wb1');
|
wolffd@0
|
45 % Try to preserve aspect ratio approximately
|
wolffd@0
|
46 if (8*net.nhidden < 6*(net.nin + 1))
|
wolffd@0
|
47 delx = xmax; dely = xmax*net.nhidden/(net.nin + 1);
|
wolffd@0
|
48 else
|
wolffd@0
|
49 delx = ymax*(net.nin + 1)/net.nhidden; dely = ymax;
|
wolffd@0
|
50 end
|
wolffd@0
|
51
|
wolffd@0
|
52 h1 = figure('Color', [0.5 0.5 0.5], ...
|
wolffd@0
|
53 'Name', 'Hinton diagram: first-layer weights and biases', ...
|
wolffd@0
|
54 'NumberTitle', 'off', ...
|
wolffd@0
|
55 'Colormap', [0 0 0; 1 1 1], ...
|
wolffd@0
|
56 'Units', 'pixels', ...
|
wolffd@0
|
57 'Position', [x01 y01 delx dely]);
|
wolffd@0
|
58 set(gca, 'Visible', 'off', 'Position', [0 0 1 1]);
|
wolffd@0
|
59 hold on
|
wolffd@0
|
60
|
wolffd@0
|
61 cmap = [0 0 0; 1 1 1];
|
wolffd@0
|
62 colors(1, :, :) = cmap(color, :);
|
wolffd@0
|
63 patch(xvals', yvals', colors, 'Edgecolor', 'none');
|
wolffd@0
|
64 axis equal;
|
wolffd@0
|
65 xpos = net.nin;
|
wolffd@0
|
66 line([xpos xpos], [0 net.nhidden], 'color', 'red', 'linewidth', 3);
|
wolffd@0
|
67
|
wolffd@0
|
68 % Second layer
|
wolffd@0
|
69
|
wolffd@0
|
70 wb2 = [net.w2; net.b2];
|
wolffd@0
|
71 [xvals, yvals, color] = hintmat(wb2');
|
wolffd@0
|
72 if (8*net.nout < 6*(net.nhidden + 1))
|
wolffd@0
|
73 delx = xmax; dely = xmax*net.nout/(net.nhidden + 1);
|
wolffd@0
|
74 else
|
wolffd@0
|
75 delx = ymax*(net.nhidden + 1)/net.nout; dely = ymax;
|
wolffd@0
|
76 end
|
wolffd@0
|
77
|
wolffd@0
|
78 h2 = figure('Color', [0.5 0.5 0.5], ...
|
wolffd@0
|
79 'Name', 'Hinton diagram: second-layer weights and biases', ...
|
wolffd@0
|
80 'NumberTitle', 'off', ...
|
wolffd@0
|
81 'Colormap', [0 0 0; 1 1 1], ...
|
wolffd@0
|
82 'Units', 'pixels', ...
|
wolffd@0
|
83 'Position', [x02 y02 delx dely]);
|
wolffd@0
|
84 set(gca, 'Visible', 'off', 'Position', [0 0 1 1]);
|
wolffd@0
|
85
|
wolffd@0
|
86 hold on
|
wolffd@0
|
87 colors2(1, :, :) = cmap(color, :);
|
wolffd@0
|
88 patch(xvals', yvals', colors2, 'Edgecolor', 'none');
|
wolffd@0
|
89 axis equal;
|
wolffd@0
|
90 xpos = net.nhidden;
|
wolffd@0
|
91 line([xpos xpos], [0 net.nout], 'color', 'red', 'linewidth', 3);
|
wolffd@0
|
92
|