annotate toolboxes/FullBNT-1.0.7/netlab3.3/mlpevfwd.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
rev   line source
wolffd@0 1 function [y, extra, invhess] = mlpevfwd(net, x, t, x_test, invhess)
wolffd@0 2 %MLPEVFWD Forward propagation with evidence for MLP
wolffd@0 3 %
wolffd@0 4 % Description
wolffd@0 5 % Y = MLPEVFWD(NET, X, T, X_TEST) takes a network data structure NET
wolffd@0 6 % together with the input X and target T training data and input test
wolffd@0 7 % data X_TEST. It returns the normal forward propagation through the
wolffd@0 8 % network Y together with a matrix EXTRA which consists of error bars
wolffd@0 9 % (variance) for a regression problem or moderated outputs for a
wolffd@0 10 % classification problem. The optional argument (and return value)
wolffd@0 11 % INVHESS is the inverse of the network Hessian computed on the
wolffd@0 12 % training data inputs and targets. Passing it in avoids recomputing
wolffd@0 13 % it, which can be a significant saving for large training sets.
wolffd@0 14 %
wolffd@0 15 % See also
wolffd@0 16 % FEVBAYES
wolffd@0 17 %
wolffd@0 18
wolffd@0 19 % Copyright (c) Ian T Nabney (1996-2001)
wolffd@0 20
wolffd@0 21 [y, z, a] = mlpfwd(net, x_test);
wolffd@0 22 if nargin == 4
wolffd@0 23 [extra, invhess] = fevbayes(net, y, a, x, t, x_test);
wolffd@0 24 else
wolffd@0 25 [extra, invhess] = fevbayes(net, y, a, x, t, x_test, invhess);
wolffd@0 26 end