annotate toolboxes/FullBNT-1.0.7/netlab3.3/mlpderiv.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
rev   line source
wolffd@0 1 function g = mlpderiv(net, x)
wolffd@0 2 %MLPDERIV Evaluate derivatives of network outputs with respect to weights.
wolffd@0 3 %
wolffd@0 4 % Description
wolffd@0 5 % G = MLPDERIV(NET, X) takes a network data structure NET and a matrix
wolffd@0 6 % of input vectors X and returns a three-index matrix G whose I, J, K
wolffd@0 7 % element contains the derivative of network output K with respect to
wolffd@0 8 % weight or bias parameter J for input pattern I. The ordering of the
wolffd@0 9 % weight and bias parameters is defined by MLPUNPAK.
wolffd@0 10 %
wolffd@0 11 % See also
wolffd@0 12 % MLP, MLPPAK, MLPGRAD, MLPBKP
wolffd@0 13 %
wolffd@0 14
wolffd@0 15 % Copyright (c) Ian T Nabney (1996-2001)
wolffd@0 16
wolffd@0 17 % Check arguments for consistency
wolffd@0 18 errstring = consist(net, 'mlp', x);
wolffd@0 19 if ~isempty(errstring);
wolffd@0 20 error(errstring);
wolffd@0 21 end
wolffd@0 22
wolffd@0 23 [y, z] = mlpfwd(net, x);
wolffd@0 24
wolffd@0 25 ndata = size(x, 1);
wolffd@0 26
wolffd@0 27 if isfield(net, 'mask')
wolffd@0 28 nwts = size(find(net.mask), 1);
wolffd@0 29 temp = zeros(1, net.nwts);
wolffd@0 30 else
wolffd@0 31 nwts = net.nwts;
wolffd@0 32 end
wolffd@0 33
wolffd@0 34 g = zeros(ndata, nwts, net.nout);
wolffd@0 35 for k = 1 : net.nout
wolffd@0 36 delta = zeros(1, net.nout);
wolffd@0 37 delta(1, k) = 1;
wolffd@0 38 for n = 1 : ndata
wolffd@0 39 if isfield(net, 'mask')
wolffd@0 40 temp = mlpbkp(net, x(n, :), z(n, :), delta);
wolffd@0 41 g(n, :, k) = temp(logical(net.mask));
wolffd@0 42 else
wolffd@0 43 g(n, :, k) = mlpbkp(net, x(n, :), z(n, :),...
wolffd@0 44 delta);
wolffd@0 45 end
wolffd@0 46 end
wolffd@0 47 end