annotate toolboxes/FullBNT-1.0.7/netlab3.3/glmerr.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
rev   line source
wolffd@0 1 function [e, edata, eprior, y, a] = glmerr(net, x, t)
wolffd@0 2 %GLMERR Evaluate error function for generalized linear model.
wolffd@0 3 %
wolffd@0 4 % Description
wolffd@0 5 % E = GLMERR(NET, X, T) takes a generalized linear model data
wolffd@0 6 % structure NET together with a matrix X of input vectors and a matrix
wolffd@0 7 % T of target vectors, and evaluates the error function E. The choice
wolffd@0 8 % of error function corresponds to the output unit activation function.
wolffd@0 9 % Each row of X corresponds to one input vector and each row of T
wolffd@0 10 % corresponds to one target vector.
wolffd@0 11 %
wolffd@0 12 % [E, EDATA, EPRIOR, Y, A] = GLMERR(NET, X, T) also returns the data
wolffd@0 13 % and prior components of the total error.
wolffd@0 14 %
wolffd@0 15 % [E, EDATA, EPRIOR, Y, A] = GLMERR(NET, X) also returns a matrix Y
wolffd@0 16 % giving the outputs of the models and a matrix A giving the summed
wolffd@0 17 % inputs to each output unit, where each row corresponds to one
wolffd@0 18 % pattern.
wolffd@0 19 %
wolffd@0 20 % See also
wolffd@0 21 % GLM, GLMPAK, GLMUNPAK, GLMFWD, GLMGRAD, GLMTRAIN
wolffd@0 22 %
wolffd@0 23
wolffd@0 24 % Copyright (c) Ian T Nabney (1996-2001)
wolffd@0 25
wolffd@0 26 % Check arguments for consistency
wolffd@0 27 errstring = consist(net, 'glm', x, t);
wolffd@0 28 if ~isempty(errstring);
wolffd@0 29 error(errstring);
wolffd@0 30 end
wolffd@0 31
wolffd@0 32 [y, a] = glmfwd(net, x);
wolffd@0 33
wolffd@0 34 switch net.outfn
wolffd@0 35
wolffd@0 36 case 'linear' % Linear outputs
wolffd@0 37 edata = 0.5*sum(sum((y - t).^2));
wolffd@0 38
wolffd@0 39 case 'logistic' % Logistic outputs
wolffd@0 40 edata = - sum(sum(t.*log(y) + (1 - t).*log(1 - y)));
wolffd@0 41
wolffd@0 42 case 'softmax' % Softmax outputs
wolffd@0 43 edata = - sum(sum(t.*log(y)));
wolffd@0 44
wolffd@0 45 otherwise
wolffd@0 46 error(['Unknown activation function ', net.outfn]);
wolffd@0 47 end
wolffd@0 48
wolffd@0 49 [e, edata, eprior] = errbayes(net, edata);