annotate toolboxes/FullBNT-1.0.7/nethelp3.3/rbftrain.htm @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
rev   line source
wolffd@0 1 <html>
wolffd@0 2 <head>
wolffd@0 3 <title>
wolffd@0 4 Netlab Reference Manual rbftrain
wolffd@0 5 </title>
wolffd@0 6 </head>
wolffd@0 7 <body>
wolffd@0 8 <H1> rbftrain
wolffd@0 9 </H1>
wolffd@0 10 <h2>
wolffd@0 11 Purpose
wolffd@0 12 </h2>
wolffd@0 13 Two stage training of RBF network.
wolffd@0 14
wolffd@0 15 <p><h2>
wolffd@0 16 Description
wolffd@0 17 </h2>
wolffd@0 18 <CODE>net = rbftrain(net, options, x, t)</CODE> uses a
wolffd@0 19 two stage training
wolffd@0 20 algorithm to set the weights in the RBF model structure <CODE>net</CODE>.
wolffd@0 21 Each row of <CODE>x</CODE> corresponds to one
wolffd@0 22 input vector and each row of <CODE>t</CODE> contains the corresponding target vector.
wolffd@0 23 The centres are determined by fitting a Gaussian mixture model
wolffd@0 24 with circular covariances using the EM algorithm through a call to
wolffd@0 25 <CODE>rbfsetbf</CODE>. (The mixture model is
wolffd@0 26 initialised using a small number of iterations of the K-means algorithm.)
wolffd@0 27 If the activation functions are Gaussians, then the basis function widths
wolffd@0 28 are then set to the maximum inter-centre squared distance.
wolffd@0 29
wolffd@0 30 <p>For linear outputs,
wolffd@0 31 the hidden to output
wolffd@0 32 weights that give rise to the least squares solution
wolffd@0 33 can then be determined using the pseudo-inverse. For neuroscale outputs,
wolffd@0 34 the hidden to output weights are determined using the iterative shadow
wolffd@0 35 targets algorithm.
wolffd@0 36 Although this two stage
wolffd@0 37 procedure may not give solutions with as low an error as using general
wolffd@0 38 purpose non-linear optimisers, it is much faster.
wolffd@0 39
wolffd@0 40 <p>The options vector may have two rows: if this is the case, then the second row
wolffd@0 41 is passed to <CODE>rbfsetbf</CODE>, which allows the user to specify a different
wolffd@0 42 number iterations for RBF and GMM training.
wolffd@0 43 The optional parameters to <CODE>rbftrain</CODE> have the following interpretations.
wolffd@0 44
wolffd@0 45 <p><CODE>options(1)</CODE> is set to 1 to display error values during EM training.
wolffd@0 46
wolffd@0 47 <p><CODE>options(2)</CODE> is a measure of the precision required for the value
wolffd@0 48 of the weights <CODE>w</CODE> at the solution.
wolffd@0 49
wolffd@0 50 <p><CODE>options(3)</CODE> is a measure of the precision required of the objective
wolffd@0 51 function at the solution. Both this and the previous condition must be
wolffd@0 52 satisfied for termination.
wolffd@0 53
wolffd@0 54 <p><CODE>options(5)</CODE> is set to 1 if the basis functions parameters should remain
wolffd@0 55 unchanged; default 0.
wolffd@0 56
wolffd@0 57 <p><CODE>options(6)</CODE> is set to 1 if the output layer weights should be should
wolffd@0 58 set using PCA. This is only relevant for Neuroscale outputs; default 0.
wolffd@0 59
wolffd@0 60 <p><CODE>options(14)</CODE> is the maximum number of iterations for the shadow
wolffd@0 61 targets algorithm;
wolffd@0 62 default 100.
wolffd@0 63
wolffd@0 64 <p><h2>
wolffd@0 65 Example
wolffd@0 66 </h2>
wolffd@0 67 The following example creates an RBF network and then trains it:
wolffd@0 68 <PRE>
wolffd@0 69
wolffd@0 70 net = rbf(1, 4, 1, 'gaussian');
wolffd@0 71 options(1, :) = foptions;
wolffd@0 72 options(2, :) = foptions;
wolffd@0 73 options(2, 14) = 10; % 10 iterations of EM
wolffd@0 74 options(2, 5) = 1; % Check for covariance collapse in EM
wolffd@0 75 net = rbftrain(net, options, x, t);
wolffd@0 76 </PRE>
wolffd@0 77
wolffd@0 78
wolffd@0 79 <p><h2>
wolffd@0 80 See Also
wolffd@0 81 </h2>
wolffd@0 82 <CODE><a href="rbf.htm">rbf</a></CODE>, <CODE><a href="rbferr.htm">rbferr</a></CODE>, <CODE><a href="rbffwd.htm">rbffwd</a></CODE>, <CODE><a href="rbfgrad.htm">rbfgrad</a></CODE>, <CODE><a href="rbfpak.htm">rbfpak</a></CODE>, <CODE><a href="rbfunpak.htm">rbfunpak</a></CODE>, <CODE><a href="rbfsetbf.htm">rbfsetbf</a></CODE><hr>
wolffd@0 83 <b>Pages:</b>
wolffd@0 84 <a href="index.htm">Index</a>
wolffd@0 85 <hr>
wolffd@0 86 <p>Copyright (c) Ian T Nabney (1996-9)
wolffd@0 87
wolffd@0 88
wolffd@0 89 </body>
wolffd@0 90 </html>