wolffd@0
|
1 <html>
|
wolffd@0
|
2 <head>
|
wolffd@0
|
3 <title>
|
wolffd@0
|
4 Netlab Reference Manual gp
|
wolffd@0
|
5 </title>
|
wolffd@0
|
6 </head>
|
wolffd@0
|
7 <body>
|
wolffd@0
|
8 <H1> gp
|
wolffd@0
|
9 </H1>
|
wolffd@0
|
10 <h2>
|
wolffd@0
|
11 Purpose
|
wolffd@0
|
12 </h2>
|
wolffd@0
|
13 Create a Gaussian Process.
|
wolffd@0
|
14
|
wolffd@0
|
15 <p><h2>
|
wolffd@0
|
16 Synopsis
|
wolffd@0
|
17 </h2>
|
wolffd@0
|
18 <PRE>
|
wolffd@0
|
19 net = gp(nin, covarfn)
|
wolffd@0
|
20 net = gp(nin, covarfn, prior)
|
wolffd@0
|
21 </PRE>
|
wolffd@0
|
22
|
wolffd@0
|
23
|
wolffd@0
|
24 <p><h2>
|
wolffd@0
|
25 Description
|
wolffd@0
|
26 </h2>
|
wolffd@0
|
27
|
wolffd@0
|
28 <p><CODE>net = gp(nin, covarfn)</CODE> takes the number of inputs <CODE>nin</CODE>
|
wolffd@0
|
29 for a Gaussian Process model with a single output, together
|
wolffd@0
|
30 with a string <CODE>covarfn</CODE> which specifies the type of the covariance function,
|
wolffd@0
|
31 and returns a data structure <CODE>net</CODE>. The parameters are set to zero.
|
wolffd@0
|
32
|
wolffd@0
|
33 <p>The fields in <CODE>net</CODE> are
|
wolffd@0
|
34 <PRE>
|
wolffd@0
|
35 type = 'gp'
|
wolffd@0
|
36 nin = number of inputs
|
wolffd@0
|
37 nout = number of outputs: always 1
|
wolffd@0
|
38 nwts = total number of weights and covariance function parameters
|
wolffd@0
|
39 bias = logarithm of constant offset in covariance function
|
wolffd@0
|
40 noise = logarithm of output noise variance
|
wolffd@0
|
41 inweights = logarithm of inverse length scale for each input
|
wolffd@0
|
42 covarfn = string describing the covariance function:
|
wolffd@0
|
43 'sqexp'
|
wolffd@0
|
44 'ratquad'
|
wolffd@0
|
45 fpar = covariance function specific parameters (1 for squared exponential,
|
wolffd@0
|
46 2 for rational quadratic)
|
wolffd@0
|
47 trin = training input data (initially empty)
|
wolffd@0
|
48 trtargets = training target data (initially empty)
|
wolffd@0
|
49 </PRE>
|
wolffd@0
|
50
|
wolffd@0
|
51
|
wolffd@0
|
52 <p><CODE>net = gp(nin, covarfn, prior)</CODE> sets a Gaussian prior on the
|
wolffd@0
|
53 parameters of the model. <CODE>prior</CODE> must contain the fields
|
wolffd@0
|
54 <CODE>pr_mean</CODE> and <CODE>pr_variance</CODE>. If <CODE>pr_mean</CODE> is a scalar,
|
wolffd@0
|
55 then the Gaussian is assumed to be isotropic and the additional fields
|
wolffd@0
|
56 <CODE>net.pr_mean</CODE> and <CODE>pr_variance</CODE> are set. Otherwise,
|
wolffd@0
|
57 the Gaussian prior has a mean
|
wolffd@0
|
58 defined by a column vector of parameters <CODE>prior.pr_mean</CODE> and
|
wolffd@0
|
59 covariance defined by a column vector of parameters <CODE>prior.pr_variance</CODE>.
|
wolffd@0
|
60 Each element of <CODE>prmean</CODE> corresponds to a separate group of parameters, which
|
wolffd@0
|
61 need not be mutually exclusive. The membership of the groups is defined
|
wolffd@0
|
62 by the matrix <CODE>prior.index</CODE> in which the columns correspond to the elements of
|
wolffd@0
|
63 <CODE>prmean</CODE>. Each column has one element for each weight in the matrix,
|
wolffd@0
|
64 in the order defined by the function <CODE>gppak</CODE>, and each element
|
wolffd@0
|
65 is 1 or 0 according to whether the parameter is a member of the
|
wolffd@0
|
66 corresponding group or not. The additional field <CODE>net.index</CODE> is set
|
wolffd@0
|
67 in this case.
|
wolffd@0
|
68
|
wolffd@0
|
69 <p><h2>
|
wolffd@0
|
70 See Also
|
wolffd@0
|
71 </h2>
|
wolffd@0
|
72 <CODE><a href="gppak.htm">gppak</a></CODE>, <CODE><a href="gpunpak.htm">gpunpak</a></CODE>, <CODE><a href="gpfwd.htm">gpfwd</a></CODE>, <CODE><a href="gperr.htm">gperr</a></CODE>, <CODE><a href="gpcovar.htm">gpcovar</a></CODE>, <CODE><a href="gpgrad.htm">gpgrad</a></CODE><hr>
|
wolffd@0
|
73 <b>Pages:</b>
|
wolffd@0
|
74 <a href="index.htm">Index</a>
|
wolffd@0
|
75 <hr>
|
wolffd@0
|
76 <p>Copyright (c) Ian T Nabney (1996-9)
|
wolffd@0
|
77
|
wolffd@0
|
78
|
wolffd@0
|
79 </body>
|
wolffd@0
|
80 </html> |