annotate toolboxes/FullBNT-1.0.7/nethelp3.3/demkmn1.htm @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
rev   line source
wolffd@0 1 <html>
wolffd@0 2 <head>
wolffd@0 3 <title>
wolffd@0 4 Netlab Reference Manual demkmean
wolffd@0 5 </title>
wolffd@0 6 </head>
wolffd@0 7 <body>
wolffd@0 8 <H1> demkmean
wolffd@0 9 </H1>
wolffd@0 10 <h2>
wolffd@0 11 Purpose
wolffd@0 12 </h2>
wolffd@0 13 Demonstrate simple clustering model trained with K-means.
wolffd@0 14
wolffd@0 15 <p><h2>
wolffd@0 16 Synopsis
wolffd@0 17 </h2>
wolffd@0 18 <PRE>
wolffd@0 19 demkmean</PRE>
wolffd@0 20
wolffd@0 21
wolffd@0 22 <p><h2>
wolffd@0 23 Description
wolffd@0 24 </h2>
wolffd@0 25 The problem consists of data in a two-dimensional space.
wolffd@0 26 The data is
wolffd@0 27 drawn from three spherical Gaussian distributions with priors 0.3,
wolffd@0 28 0.5 and 0.2; centres (2, 3.5), (0, 0) and (0,2); and standard deviations
wolffd@0 29 0.2, 0.5 and 1.0. The first figure contains a
wolffd@0 30 scatter plot of the data. The data is the same as in <CODE>demgmm1</CODE>.
wolffd@0 31
wolffd@0 32 <p>A cluster model with three components is trained using the batch
wolffd@0 33 K-means algorithm. The matrix of centres is printed after training.
wolffd@0 34 The second
wolffd@0 35 figure shows the data labelled with a colour derived from the corresponding
wolffd@0 36 cluster
wolffd@0 37
wolffd@0 38 <p><h2>
wolffd@0 39 See Also
wolffd@0 40 </h2>
wolffd@0 41 <CODE><a href="dem2ddat.htm">dem2ddat</a></CODE>, <CODE><a href="demgmm1.htm">demgmm1</a></CODE>, <CODE><a href="knn1.htm">knn1</a></CODE>, <CODE><a href="kmeans.htm">kmeans</a></CODE><hr>
wolffd@0 42 <b>Pages:</b>
wolffd@0 43 <a href="index.htm">Index</a>
wolffd@0 44 <hr>
wolffd@0 45 <p>Copyright (c) Ian T Nabney (1996-9)
wolffd@0 46
wolffd@0 47
wolffd@0 48 </body>
wolffd@0 49 </html>