annotate toolboxes/FullBNT-1.0.7/graph/check_triangulated.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
rev   line source
wolffd@0 1 function [triangulated, order] = check_triangulated(G)
wolffd@0 2 % CHECK_TRIANGULATED Return 1 if G is a triangulated (chordal) graph, 0 otherwise.
wolffd@0 3 % [triangulated, order] = check_triangulated(G)
wolffd@0 4 %
wolffd@0 5 % A numbering alpha is perfect if Nbrs(alpha(i)) intersect {alpha(1)...alpha(i-1)} is complete.
wolffd@0 6 % A graph is triangulated iff it has a perfect numbering.
wolffd@0 7 % The Maximum Cardinality Search algorithm will create such a perfect numbering if possible.
wolffd@0 8 % See Golumbic, "Algorithmic Graph Theory and Perfect Graphs", Cambridge Univ. Press, 1985, p85.
wolffd@0 9 % or Castillo, Gutierrez and Hadi, "Expert systems and probabilistic network models", Springer 1997, p134.
wolffd@0 10
wolffd@0 11
wolffd@0 12 G = setdiag(G, 1);
wolffd@0 13 n = length(G);
wolffd@0 14 order = zeros(1,n);
wolffd@0 15 triangulated = 1;
wolffd@0 16 numbered = [1];
wolffd@0 17 order(1) = 1;
wolffd@0 18 for i=2:n
wolffd@0 19 U = mysetdiff(1:n, numbered); % unnumbered nodes
wolffd@0 20 score = zeros(1, length(U));
wolffd@0 21 for ui=1:length(U)
wolffd@0 22 u = U(ui);
wolffd@0 23 score(ui) = length(myintersect(neighbors(G, u), numbered));
wolffd@0 24 end
wolffd@0 25 u = U(argmax(score));
wolffd@0 26 numbered = [numbered u];
wolffd@0 27 order(i) = u;
wolffd@0 28 nns = myintersect(neighbors(G,u), order(1:i-1)); % numbered neighbors
wolffd@0 29 if ~isequal(G(nns,nns), ones(length(nns))) % ~complete(G(nns,nns))
wolffd@0 30 triangulated = 0;
wolffd@0 31 break;
wolffd@0 32 end
wolffd@0 33 end
wolffd@0 34