annotate toolboxes/FullBNT-1.0.7/bnt/learning/learn_struct_dbn_reveal.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
rev   line source
wolffd@0 1 function inter = learn_struct_dbn_reveal(seqs, ns, max_fan_in, penalty)
wolffd@0 2 % LEARN_STRUCT_DBN_REVEAL Learn inter-slice adjacency matrix given fully observable discrete time series
wolffd@0 3 % inter = learn_struct_dbn_reveal(seqs, node_sizes, max_fan_in, penalty)
wolffd@0 4 %
wolffd@0 5 % seqs{l}{i,t} = value of node i in slice t of time-series l.
wolffd@0 6 % If you have a single time series in an N*T array D, use
wolffd@0 7 % seqs = { num2cell(D) }.
wolffd@0 8 % If you have L time series, each of length T, in an N*T*L array D, use
wolffd@0 9 % seqs= cell(1,L); for l=1:L, seqs{l} = num2cell(D(:,:,l)); end
wolffd@0 10 % or, in vectorized form,
wolffd@0 11 % seqs = squeeze(num2cell(num2cell(D),[1 2]));
wolffd@0 12 % Currently the data is assumed to be discrete (1,2,...)
wolffd@0 13 %
wolffd@0 14 % node_sizes(i) is the number of possible values for node i
wolffd@0 15 % max_fan_in is the largest number of parents we allow per node (default: N)
wolffd@0 16 % penalty is weight given to the complexity penalty (default: 0.5)
wolffd@0 17 % A penalty of 0.5 gives the BIC score.
wolffd@0 18 % A penalty of 0 gives the ML score.
wolffd@0 19 % Maximizing likelihood is equivalent to maximizing mutual information between parents and child.
wolffd@0 20 %
wolffd@0 21 % inter(i,j) = 1 iff node in slice t connects to node j in slice t+1
wolffd@0 22 %
wolffd@0 23 % The parent set for each node in slice 2 is computed by evaluating all subsets of nodes in slice 1,
wolffd@0 24 % and picking the largest scoring one. This takes O(n^k) time per node, where n is the num. nodes
wolffd@0 25 % per slice, and k <= n is the max fan in.
wolffd@0 26 % Since all the nodes are observed, we do not need to use an inference engine.
wolffd@0 27 % And since we are only learning the inter-slice matrix, we do not need to check for cycles.
wolffd@0 28 %
wolffd@0 29 % This algorithm is described in
wolffd@0 30 % - "REVEAL: A general reverse engineering algorithm for inference of genetic network
wolffd@0 31 % architectures", Liang et al. PSB 1998
wolffd@0 32 % - "Extended dependency analysis of large systems",
wolffd@0 33 % Roger Conant, Intl. J. General Systems, 1988, vol 14, pp 97-141
wolffd@0 34 % - "Learning the structure of DBNs", Friedman, Murphy and Russell, UAI 1998.
wolffd@0 35
wolffd@0 36 n = length(ns);
wolffd@0 37
wolffd@0 38 if nargin < 3, max_fan_in = n; end
wolffd@0 39 if nargin < 4, penalty = 0.5; end
wolffd@0 40
wolffd@0 41 inter = zeros(n,n);
wolffd@0 42
wolffd@0 43 if ~iscell(seqs)
wolffd@0 44 data{1} = seqs;
wolffd@0 45 end
wolffd@0 46
wolffd@0 47 nseq = length(seqs);
wolffd@0 48 nslices = 0;
wolffd@0 49 data = cell(1, nseq);
wolffd@0 50 for l=1:nseq
wolffd@0 51 nslices = nslices + size(seqs{l}, 2);
wolffd@0 52 data{l} = cell2num(seqs{l})'; % each row is a case
wolffd@0 53 end
wolffd@0 54 ndata = nslices - nseq; % subtract off the initial slice of each sequence
wolffd@0 55
wolffd@0 56 % We concatenate the sequences as in the following example.
wolffd@0 57 % Let there be 2 sequences of lengths 4 and 5, with n nodes per slice,
wolffd@0 58 % and let i be the target node.
wolffd@0 59 % Then we construct following matrix D
wolffd@0 60 %
wolffd@0 61 % s{1}{1,1} ... s{1}{1,3} s{2}{1,1} ... s{2}{1,4}
wolffd@0 62 % ....
wolffd@0 63 % s{1}{n,1} ... s{1}{n,3} s{2}{n,1} ... s{2}{n,4}
wolffd@0 64 % s{1}{i,2} ... s{1}{i,4} s{2}{i,2} ... s{2}{i,5}
wolffd@0 65 %
wolffd@0 66 % D(1:n, i) is the i'th input and D(n+1, i) is the i'th output.
wolffd@0 67 %
wolffd@0 68 % We concatenate each sequence separately to avoid treating the transition
wolffd@0 69 % from the end of one sequence to the beginning of another as a "normal" transition.
wolffd@0 70
wolffd@0 71
wolffd@0 72 for i=1:n
wolffd@0 73 D = [];
wolffd@0 74 for l=1:nseq
wolffd@0 75 T = size(seqs{l}, 2);
wolffd@0 76 A = cell2num(seqs{l}(:, 1:T-1));
wolffd@0 77 B = cell2num(seqs{l}(i, 2:T));
wolffd@0 78 C = [A;B];
wolffd@0 79 D = [D C];
wolffd@0 80 end
wolffd@0 81 SS = subsets(1:n, max_fan_in, 1); % skip the empty set
wolffd@0 82 nSS = length(SS);
wolffd@0 83 bic_score = zeros(1, nSS);
wolffd@0 84 ll_score = zeros(1, nSS);
wolffd@0 85 target = n+1;
wolffd@0 86 ns2 = [ns ns(i)];
wolffd@0 87 for h=1:nSS
wolffd@0 88 ps = SS{h};
wolffd@0 89 dom = [ps target];
wolffd@0 90 counts = compute_counts(D(dom, :), ns2(dom));
wolffd@0 91 CPT = mk_stochastic(counts);
wolffd@0 92 [bic_score(h), ll_score(h)] = bic_score_family(counts, CPT, ndata);
wolffd@0 93 end
wolffd@0 94 if penalty == 0
wolffd@0 95 h = argmax(ll_score);
wolffd@0 96 else
wolffd@0 97 h = argmax(bic_score);
wolffd@0 98 end
wolffd@0 99 ps = SS{h};
wolffd@0 100 inter(ps, i) = 1;
wolffd@0 101 end