wolffd@0
|
1 function [engine, loglik] = enter_evidence(engine, evidence, varargin)
|
wolffd@0
|
2 % ENTER_EVIDENCE Add the specified evidence to the network (hmm)
|
wolffd@0
|
3 % [engine, loglik] = enter_evidence(engine, evidence, ...)
|
wolffd@0
|
4 %
|
wolffd@0
|
5 % evidence{i,t} = [] if if X(i,t) is hidden, and otherwise contains its observed value (scalar or column vector)
|
wolffd@0
|
6 %
|
wolffd@0
|
7 % The following optional arguments can be specified in the form of name/value pairs:
|
wolffd@0
|
8 % [default value in brackets]
|
wolffd@0
|
9 %
|
wolffd@0
|
10 % maximize - if 1, does max-product (not yet supported), else sum-product [0]
|
wolffd@0
|
11 % filter - if 1, does filtering, else smoothing [0]
|
wolffd@0
|
12 % oneslice - 1 means only compute marginals on nodes within a single slice [0]
|
wolffd@0
|
13 %
|
wolffd@0
|
14 % e.g., engine = enter_evidence(engine, ev, 'maximize', 1)
|
wolffd@0
|
15
|
wolffd@0
|
16 maximize = 0;
|
wolffd@0
|
17 filter = 0;
|
wolffd@0
|
18 oneslice = 0;
|
wolffd@0
|
19
|
wolffd@0
|
20 % parse optional params
|
wolffd@0
|
21 args = varargin;
|
wolffd@0
|
22 nargs = length(args);
|
wolffd@0
|
23 if nargs > 0
|
wolffd@0
|
24 for i=1:2:nargs
|
wolffd@0
|
25 switch args{i},
|
wolffd@0
|
26 case 'maximize', maximize = args{i+1};
|
wolffd@0
|
27 case 'filter', filter = args{i+1};
|
wolffd@0
|
28 case 'oneslice', oneslice = args{i+1};
|
wolffd@0
|
29 otherwise,
|
wolffd@0
|
30 error(['invalid argument name ' args{i}]);
|
wolffd@0
|
31 end
|
wolffd@0
|
32 end
|
wolffd@0
|
33 end
|
wolffd@0
|
34
|
wolffd@0
|
35 [ss T] = size(evidence);
|
wolffd@0
|
36 engine.maximize = maximize;
|
wolffd@0
|
37 engine.evidence = evidence;
|
wolffd@0
|
38 bnet = bnet_from_engine(engine);
|
wolffd@0
|
39 engine.node_sizes = repmat(bnet.node_sizes_slice(:), [1 T]);
|
wolffd@0
|
40
|
wolffd@0
|
41 obs_bitv = ~isemptycell(evidence(:));
|
wolffd@0
|
42 bitv = reshape(obs_bitv, ss, T);
|
wolffd@0
|
43 for t=1:T
|
wolffd@0
|
44 onodes = find(bitv(:,t));
|
wolffd@0
|
45 if ~isequal(onodes, bnet.observed(:))
|
wolffd@0
|
46 error(['dbn was created assuming observed nodes per slice were '...
|
wolffd@0
|
47 num2str(bnet.observed(:)') ' but the evidence in slice ' num2str(t) ...
|
wolffd@0
|
48 ' has observed nodes ' num2str(onodes(:)')]);
|
wolffd@0
|
49 end
|
wolffd@0
|
50 end
|
wolffd@0
|
51
|
wolffd@0
|
52 obslik = mk_hmm_obs_lik_matrix(engine, evidence);
|
wolffd@0
|
53
|
wolffd@0
|
54 %[alpha, beta, gamma, loglik, xi] = fwdback(engine.startprob, engine.transprob, obslik, ...
|
wolffd@0
|
55 [alpha, beta, gamma, loglik, xi] = fwdback_twoslice(engine, engine.startprob,...
|
wolffd@0
|
56 engine.transprob, obslik, ...
|
wolffd@0
|
57 'maximize', maximize, 'fwd_only', filter, ...
|
wolffd@0
|
58 'compute_xi', ~oneslice);
|
wolffd@0
|
59
|
wolffd@0
|
60 engine.one_slice_marginal = gamma; % gamma(:,t) for t=1:T
|
wolffd@0
|
61 if ~oneslice
|
wolffd@0
|
62 Q = size(gamma,1);
|
wolffd@0
|
63 engine.two_slice_marginal = reshape(xi, [Q*Q T-1]); % xi(:,t) for t=1:T-1
|
wolffd@0
|
64 end
|