wolffd@0
|
1 function bnet = mk_limid(dag, node_sizes, varargin)
|
wolffd@0
|
2 % MK_LIMID Make a limited information influence diagram
|
wolffd@0
|
3 %
|
wolffd@0
|
4 % BNET = MK_LIMID(DAG, NODE_SIZES, ...)
|
wolffd@0
|
5 % DAG is the adjacency matrix for a directed acyclic graph.
|
wolffd@0
|
6 % The nodes are assumed to be in topological order. Use TOPOLOGICAL_SORT if necessary.
|
wolffd@0
|
7 % For decision nodes, the parents must explicitely include all nodes
|
wolffd@0
|
8 % on which it can depends, in contrast to the implicit no-forgetting assumption of influence diagrams.
|
wolffd@0
|
9 % (For details, see "Representing and solving decision problems with limited information",
|
wolffd@0
|
10 % Lauritzen and Nilsson, Management Science, 2001.)
|
wolffd@0
|
11 %
|
wolffd@0
|
12 % node_sizes(i) is the number of values node i can take on,
|
wolffd@0
|
13 % or the length of node i if i is a continuous-valued vector.
|
wolffd@0
|
14 % node_sizes(i) = 1 if i is a utility node.
|
wolffd@0
|
15 %
|
wolffd@0
|
16 % The list below gives optional arguments [default value in brackets].
|
wolffd@0
|
17 %
|
wolffd@0
|
18 % chance - the list of nodes which are random variables [1:N]
|
wolffd@0
|
19 % decision - the list of nodes which are decision nodes [ [] ]
|
wolffd@0
|
20 % utility - the list of nodes which are utility nodes [ [] ]
|
wolffd@0
|
21 % equiv_class - equiv_class(i)=j means node i gets its params from CPD{j} [1:N]
|
wolffd@0
|
22 %
|
wolffd@0
|
23 % e.g., limid = mk_limid(dag, ns, 'chance', [1 3], 'utility', [2])
|
wolffd@0
|
24
|
wolffd@0
|
25 n = length(dag);
|
wolffd@0
|
26
|
wolffd@0
|
27 % default values for parameters
|
wolffd@0
|
28 bnet.chance_nodes = 1:n;
|
wolffd@0
|
29 bnet.equiv_class = 1:n;
|
wolffd@0
|
30 bnet.utility_nodes = [];
|
wolffd@0
|
31 bnet.decision_nodes = [];
|
wolffd@0
|
32 bnet.dnodes = 1:n; % discrete
|
wolffd@0
|
33
|
wolffd@0
|
34 if nargin >= 3
|
wolffd@0
|
35 args = varargin;
|
wolffd@0
|
36 nargs = length(args);
|
wolffd@0
|
37 if ~isstr(args{1})
|
wolffd@0
|
38 if nargs >= 1, bnet.dnodes = args{1}; end
|
wolffd@0
|
39 if nargs >= 2, bnet.equiv_class = args{2}; end
|
wolffd@0
|
40 else
|
wolffd@0
|
41 for i=1:2:nargs
|
wolffd@0
|
42 switch args{i},
|
wolffd@0
|
43 case 'equiv_class', bnet.equiv_class = args{i+1};
|
wolffd@0
|
44 case 'chance', bnet.chance_nodes = args{i+1};
|
wolffd@0
|
45 case 'utility', bnet.utility_nodes = args{i+1};
|
wolffd@0
|
46 case 'decision', bnet.decision_nodes = args{i+1};
|
wolffd@0
|
47 case 'discrete', bnet.dnodes = args{i+1};
|
wolffd@0
|
48 otherwise,
|
wolffd@0
|
49 error(['invalid argument name ' args{i}]);
|
wolffd@0
|
50 end
|
wolffd@0
|
51 end
|
wolffd@0
|
52 end
|
wolffd@0
|
53 end
|
wolffd@0
|
54
|
wolffd@0
|
55 bnet.limid = 1;
|
wolffd@0
|
56
|
wolffd@0
|
57 bnet.dag = dag;
|
wolffd@0
|
58 bnet.node_sizes = node_sizes(:)';
|
wolffd@0
|
59
|
wolffd@0
|
60 bnet.cnodes = mysetdiff(1:n, bnet.dnodes);
|
wolffd@0
|
61 % too many functions refer to cnodes to rename it to cts_nodes -
|
wolffd@0
|
62 % We hope it won't be confused with chance nodes!
|
wolffd@0
|
63
|
wolffd@0
|
64 bnet.parents = cell(1,n);
|
wolffd@0
|
65 for i=1:n
|
wolffd@0
|
66 bnet.parents{i} = parents(dag, i);
|
wolffd@0
|
67 end
|
wolffd@0
|
68
|
wolffd@0
|
69 E = max(bnet.equiv_class);
|
wolffd@0
|
70 mem = cell(1,E);
|
wolffd@0
|
71 for i=1:n
|
wolffd@0
|
72 e = bnet.equiv_class(i);
|
wolffd@0
|
73 mem{e} = [mem{e} i];
|
wolffd@0
|
74 end
|
wolffd@0
|
75 bnet.members_of_equiv_class = mem;
|
wolffd@0
|
76
|
wolffd@0
|
77 bnet.CPD = cell(1, E);
|
wolffd@0
|
78
|
wolffd@0
|
79 % for e=1:E
|
wolffd@0
|
80 % i = bnet.members_of_equiv_class{e}(1); % pick arbitrary member
|
wolffd@0
|
81 % switch type{e}
|
wolffd@0
|
82 % case 'tabular', bnet.CPD{e} = tabular_CPD(bnet, i);
|
wolffd@0
|
83 % case 'gaussian', bnet.CPD{e} = gaussian_CPD(bnet, i);
|
wolffd@0
|
84 % otherwise, error(['unrecognized CPD type ' type{e}]);
|
wolffd@0
|
85 % end
|
wolffd@0
|
86 % end
|
wolffd@0
|
87
|
wolffd@0
|
88 directed = 1;
|
wolffd@0
|
89 if ~acyclic(dag,directed)
|
wolffd@0
|
90 error('graph must be acyclic')
|
wolffd@0
|
91 end
|
wolffd@0
|
92
|
wolffd@0
|
93 bnet.order = topological_sort(bnet.dag);
|