annotate toolboxes/FullBNT-1.0.7/bnt/general/mk_limid.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
rev   line source
wolffd@0 1 function bnet = mk_limid(dag, node_sizes, varargin)
wolffd@0 2 % MK_LIMID Make a limited information influence diagram
wolffd@0 3 %
wolffd@0 4 % BNET = MK_LIMID(DAG, NODE_SIZES, ...)
wolffd@0 5 % DAG is the adjacency matrix for a directed acyclic graph.
wolffd@0 6 % The nodes are assumed to be in topological order. Use TOPOLOGICAL_SORT if necessary.
wolffd@0 7 % For decision nodes, the parents must explicitely include all nodes
wolffd@0 8 % on which it can depends, in contrast to the implicit no-forgetting assumption of influence diagrams.
wolffd@0 9 % (For details, see "Representing and solving decision problems with limited information",
wolffd@0 10 % Lauritzen and Nilsson, Management Science, 2001.)
wolffd@0 11 %
wolffd@0 12 % node_sizes(i) is the number of values node i can take on,
wolffd@0 13 % or the length of node i if i is a continuous-valued vector.
wolffd@0 14 % node_sizes(i) = 1 if i is a utility node.
wolffd@0 15 %
wolffd@0 16 % The list below gives optional arguments [default value in brackets].
wolffd@0 17 %
wolffd@0 18 % chance - the list of nodes which are random variables [1:N]
wolffd@0 19 % decision - the list of nodes which are decision nodes [ [] ]
wolffd@0 20 % utility - the list of nodes which are utility nodes [ [] ]
wolffd@0 21 % equiv_class - equiv_class(i)=j means node i gets its params from CPD{j} [1:N]
wolffd@0 22 %
wolffd@0 23 % e.g., limid = mk_limid(dag, ns, 'chance', [1 3], 'utility', [2])
wolffd@0 24
wolffd@0 25 n = length(dag);
wolffd@0 26
wolffd@0 27 % default values for parameters
wolffd@0 28 bnet.chance_nodes = 1:n;
wolffd@0 29 bnet.equiv_class = 1:n;
wolffd@0 30 bnet.utility_nodes = [];
wolffd@0 31 bnet.decision_nodes = [];
wolffd@0 32 bnet.dnodes = 1:n; % discrete
wolffd@0 33
wolffd@0 34 if nargin >= 3
wolffd@0 35 args = varargin;
wolffd@0 36 nargs = length(args);
wolffd@0 37 if ~isstr(args{1})
wolffd@0 38 if nargs >= 1, bnet.dnodes = args{1}; end
wolffd@0 39 if nargs >= 2, bnet.equiv_class = args{2}; end
wolffd@0 40 else
wolffd@0 41 for i=1:2:nargs
wolffd@0 42 switch args{i},
wolffd@0 43 case 'equiv_class', bnet.equiv_class = args{i+1};
wolffd@0 44 case 'chance', bnet.chance_nodes = args{i+1};
wolffd@0 45 case 'utility', bnet.utility_nodes = args{i+1};
wolffd@0 46 case 'decision', bnet.decision_nodes = args{i+1};
wolffd@0 47 case 'discrete', bnet.dnodes = args{i+1};
wolffd@0 48 otherwise,
wolffd@0 49 error(['invalid argument name ' args{i}]);
wolffd@0 50 end
wolffd@0 51 end
wolffd@0 52 end
wolffd@0 53 end
wolffd@0 54
wolffd@0 55 bnet.limid = 1;
wolffd@0 56
wolffd@0 57 bnet.dag = dag;
wolffd@0 58 bnet.node_sizes = node_sizes(:)';
wolffd@0 59
wolffd@0 60 bnet.cnodes = mysetdiff(1:n, bnet.dnodes);
wolffd@0 61 % too many functions refer to cnodes to rename it to cts_nodes -
wolffd@0 62 % We hope it won't be confused with chance nodes!
wolffd@0 63
wolffd@0 64 bnet.parents = cell(1,n);
wolffd@0 65 for i=1:n
wolffd@0 66 bnet.parents{i} = parents(dag, i);
wolffd@0 67 end
wolffd@0 68
wolffd@0 69 E = max(bnet.equiv_class);
wolffd@0 70 mem = cell(1,E);
wolffd@0 71 for i=1:n
wolffd@0 72 e = bnet.equiv_class(i);
wolffd@0 73 mem{e} = [mem{e} i];
wolffd@0 74 end
wolffd@0 75 bnet.members_of_equiv_class = mem;
wolffd@0 76
wolffd@0 77 bnet.CPD = cell(1, E);
wolffd@0 78
wolffd@0 79 % for e=1:E
wolffd@0 80 % i = bnet.members_of_equiv_class{e}(1); % pick arbitrary member
wolffd@0 81 % switch type{e}
wolffd@0 82 % case 'tabular', bnet.CPD{e} = tabular_CPD(bnet, i);
wolffd@0 83 % case 'gaussian', bnet.CPD{e} = gaussian_CPD(bnet, i);
wolffd@0 84 % otherwise, error(['unrecognized CPD type ' type{e}]);
wolffd@0 85 % end
wolffd@0 86 % end
wolffd@0 87
wolffd@0 88 directed = 1;
wolffd@0 89 if ~acyclic(dag,directed)
wolffd@0 90 error('graph must be acyclic')
wolffd@0 91 end
wolffd@0 92
wolffd@0 93 bnet.order = topological_sort(bnet.dag);