Mercurial > hg > camir-aes2014
annotate toolboxes/FullBNT-1.0.7/bnt/general/fgraph_to_bnet.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
rev | line source |
---|---|
wolffd@0 | 1 function bnet = fgraph_to_bnet(fg) |
wolffd@0 | 2 % FGRAPH_TO_BNET Convert a factor graph to a Bayes net |
wolffd@0 | 3 % bnet = fgraph_to_bnet(fg) |
wolffd@0 | 4 % |
wolffd@0 | 5 % We assume all factors are tabular_CPD. |
wolffd@0 | 6 % We create 1 dummy observed node for every factor. |
wolffd@0 | 7 |
wolffd@0 | 8 N = fg.nvars + fg.nfactors; |
wolffd@0 | 9 vnodes = 1:fg.nvars; |
wolffd@0 | 10 fnodes = fg.nvars+1:N; |
wolffd@0 | 11 dag = zeros(N); |
wolffd@0 | 12 for x=1:fg.nvars |
wolffd@0 | 13 dag(x, fnodes(fg.dep{x})) = 1; |
wolffd@0 | 14 end |
wolffd@0 | 15 ns = [fg.node_sizes ones(1, fg.nfactors)]; |
wolffd@0 | 16 discrete = [fg.dnodes fnodes]; |
wolffd@0 | 17 bnet = mk_bnet(dag, ns, 'discrete', discrete); |
wolffd@0 | 18 for x=1:fg.nvars |
wolffd@0 | 19 bnet.CPD{x} = tabular_CPD(bnet, x, 'CPT', 'unif'); |
wolffd@0 | 20 end |
wolffd@0 | 21 ev = cell(1, fg.nvars); % no evidence |
wolffd@0 | 22 for i=1:fg.nfactors |
wolffd@0 | 23 f = fnodes(i); |
wolffd@0 | 24 e = fg.equiv_class(i); |
wolffd@0 | 25 pot = convert_to_pot(fg.factors{e}, 'd', fg.dom{i}, ev); |
wolffd@0 | 26 m = pot_to_marginal(pot); |
wolffd@0 | 27 bnet.CPD{f} = tabular_CPD(bnet, f, 'CPT', m.T); |
wolffd@0 | 28 end |
wolffd@0 | 29 |
wolffd@0 | 30 |