annotate toolboxes/FullBNT-1.0.7/bnt/examples/static/mpe2.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
rev   line source
wolffd@0 1 % Computing most probable explanation.
wolffd@0 2
wolffd@0 3 % If you don't break ties consistently, loopy can give wrong mpe
wolffd@0 4 % even though the graph has no cycles, and even though the max-marginals are the same.
wolffd@0 5 % This example was contributed by Wentau Yih <wtyih@yahoo.com> 29 Jan 02.
wolffd@0 6
wolffd@0 7 % define loop-free graph structure (all edges point down)
wolffd@0 8 %
wolffd@0 9 % Xe1 Xe2
wolffd@0 10 % | |
wolffd@0 11 % E1 E2
wolffd@0 12 % \ /
wolffd@0 13 % R1
wolffd@0 14 % |
wolffd@0 15 % Xr1
wolffd@0 16
wolffd@0 17 N = 6;
wolffd@0 18 dag = zeros(N,N);
wolffd@0 19 Xe1 = 1; Xe2 = 2; E1 = 3; E2 = 4; R1 = 5; Xr1 = 6;
wolffd@0 20 dag(Xe1, E1) = 1;
wolffd@0 21 dag(Xe2, E2) = 1;
wolffd@0 22 dag([E1 E2], R1) = 1;
wolffd@0 23 dag(R1, Xr1) = 1;
wolffd@0 24
wolffd@0 25 node_sizes = [ 1 1 2 2 2 1 ];
wolffd@0 26
wolffd@0 27 % create BN
wolffd@0 28
wolffd@0 29 bnet = mk_bnet(dag, node_sizes, 'observed', [Xe1 Xe2 Xr1]);
wolffd@0 30
wolffd@0 31 % fill in CPT
wolffd@0 32
wolffd@0 33 bnet.CPD{Xe1} = tabular_CPD(bnet, Xe1, [1]);
wolffd@0 34 bnet.CPD{Xe2} = tabular_CPD(bnet, Xe2, [1]);
wolffd@0 35 bnet.CPD{E1} = tabular_CPD(bnet, E1, [0.2 0.8]);
wolffd@0 36 bnet.CPD{E2} = tabular_CPD(bnet, E2, [0.3 0.7]);
wolffd@0 37 bnet.CPD{R1} = tabular_CPD(bnet, R1, [1 1 1 0.8 0 0 0 0.2]);
wolffd@0 38 bnet.CPD{Xr1} = tabular_CPD(bnet, Xr1, [0.15 0.85]);
wolffd@0 39
wolffd@0 40 clear engine;
wolffd@0 41 engine{1} = belprop_inf_engine(bnet);
wolffd@0 42 engine{2} = jtree_inf_engine(bnet);
wolffd@0 43 engine{3} = global_joint_inf_engine(bnet);
wolffd@0 44 engine{4} = var_elim_inf_engine(bnet);
wolffd@0 45
wolffd@0 46 evidence = cell(1,N);
wolffd@0 47 evidence{Xe1} = 1; evidence{Xe2} = 1; evidence{Xr1} = 1;
wolffd@0 48
wolffd@0 49 mpe = find_mpe(engine{1}, evidence, 'break_ties', 0) % gives wrong results
wolffd@0 50 mpe = find_mpe(engine{1}, evidence)
wolffd@0 51 for i=2:4
wolffd@0 52 mpe = find_mpe(engine{i}, evidence)
wolffd@0 53 end