annotate toolboxes/FullBNT-1.0.7/bnt/examples/static/mixexp1.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
rev   line source
wolffd@0 1 % Fit a piece-wise linear regression model.
wolffd@0 2 % Here is the model
wolffd@0 3 %
wolffd@0 4 % X \
wolffd@0 5 % | |
wolffd@0 6 % Q |
wolffd@0 7 % | /
wolffd@0 8 % Y
wolffd@0 9 %
wolffd@0 10 % where all arcs point down.
wolffd@0 11 % We condition everything on X, so X is a root node. Q is a softmax, and Y is a linear Gaussian.
wolffd@0 12 % Q is hidden, X and Y are observed.
wolffd@0 13
wolffd@0 14 X = 1;
wolffd@0 15 Q = 2;
wolffd@0 16 Y = 3;
wolffd@0 17 dag = zeros(3,3);
wolffd@0 18 dag(X,[Q Y]) = 1;
wolffd@0 19 dag(Q,Y) = 1;
wolffd@0 20 ns = [1 2 1]; % make X and Y scalars, and have 2 experts
wolffd@0 21 dnodes = [2];
wolffd@0 22 onodes = [1 3];
wolffd@0 23 bnet = mk_bnet(dag, ns, 'discrete', dnodes, 'observed', onodes);
wolffd@0 24
wolffd@0 25
wolffd@0 26 w = [-5 5]; % w(:,i) is the normal vector to the i'th decisions boundary
wolffd@0 27 b = [0 0]; % b(i) is the offset (bias) to the i'th decisions boundary
wolffd@0 28
wolffd@0 29 mu = [0 0];
wolffd@0 30 sigma = 1;
wolffd@0 31 Sigma = repmat(sigma*eye(ns(Y)), [ns(Y) ns(Y) ns(Q)]);
wolffd@0 32 W = [-1 1];
wolffd@0 33 W2 = reshape(W, [ns(Y) ns(X) ns(Q)]);
wolffd@0 34
wolffd@0 35 bnet.CPD{1} = root_CPD(bnet, 1);
wolffd@0 36 bnet.CPD{2} = softmax_CPD(bnet, 2, w, b);
wolffd@0 37 bnet.CPD{3} = gaussian_CPD(bnet, 3, 'mean', mu, 'cov', Sigma, 'weights', W2);
wolffd@0 38
wolffd@0 39
wolffd@0 40
wolffd@0 41 % Check inference
wolffd@0 42
wolffd@0 43 x = 0.1;
wolffd@0 44 ystar = 1;
wolffd@0 45
wolffd@0 46 engine = jtree_inf_engine(bnet);
wolffd@0 47 [engine, loglik] = enter_evidence(engine, {x, [], ystar});
wolffd@0 48 Qpost = marginal_nodes(engine, 2);
wolffd@0 49
wolffd@0 50 % eta(i,:) = softmax (gating) params for expert i
wolffd@0 51 eta = [b' w'];
wolffd@0 52
wolffd@0 53 % theta(i,:) = regression vector for expert i
wolffd@0 54 theta = [mu' W'];
wolffd@0 55
wolffd@0 56 % yhat(i) = E[y | Q=i, x] = prediction of i'th expert
wolffd@0 57 x1 = [1 x]';
wolffd@0 58 yhat = theta * x1;
wolffd@0 59
wolffd@0 60 % gate_prior(i,:) = Pr(Q=i | x)
wolffd@0 61 gate_prior = normalise(exp(eta * x1));
wolffd@0 62
wolffd@0 63 % cond_lik(i) = Pr(y | Q=i, x)
wolffd@0 64 cond_lik = (1/(sqrt(2*pi)*sigma)) * exp(-(0.5/sigma^2) * ((ystar - yhat) .* (ystar - yhat)));
wolffd@0 65
wolffd@0 66 % gate_posterior(i,:) = Pr(Q=i | x, y)
wolffd@0 67 [gate_posterior, lik] = normalise(gate_prior .* cond_lik);
wolffd@0 68
wolffd@0 69 assert(approxeq(gate_posterior(:), Qpost.T(:)));
wolffd@0 70 assert(approxeq(log(lik), loglik));
wolffd@0 71
wolffd@0 72