annotate toolboxes/FullBNT-1.0.7/bnt/examples/dynamic/mhmm1.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
rev   line source
wolffd@0 1 % Make an HMM with mixture of Gaussian observations
wolffd@0 2 % Q1 ---> Q2
wolffd@0 3 % / | / |
wolffd@0 4 % M1 | M2 |
wolffd@0 5 % \ v \ v
wolffd@0 6 % Y1 Y2
wolffd@0 7 % where Pr(m=j|q=i) is a multinomial and Pr(y|m,q) is a Gaussian
wolffd@0 8
wolffd@0 9 %seed = 3;
wolffd@0 10 %rand('state', seed);
wolffd@0 11 %randn('state', seed);
wolffd@0 12
wolffd@0 13 intra = zeros(3);
wolffd@0 14 intra(1,[2 3]) = 1;
wolffd@0 15 intra(2,3) = 1;
wolffd@0 16 inter = zeros(3);
wolffd@0 17 inter(1,1) = 1;
wolffd@0 18 n = 3;
wolffd@0 19
wolffd@0 20 Q = 2; % num hidden states
wolffd@0 21 O = 2; % size of observed vector
wolffd@0 22 M = 2; % num mixture components per state
wolffd@0 23
wolffd@0 24 ns = [Q M O];
wolffd@0 25 dnodes = [1 2];
wolffd@0 26 onodes = [3];
wolffd@0 27 eclass1 = [1 2 3];
wolffd@0 28 eclass2 = [4 2 3];
wolffd@0 29 bnet = mk_dbn(intra, inter, ns, 'discrete', dnodes, 'eclass1', eclass1, 'eclass2', eclass2, ...
wolffd@0 30 'observed', onodes);
wolffd@0 31
wolffd@0 32 prior0 = normalise(rand(Q,1));
wolffd@0 33 transmat0 = mk_stochastic(rand(Q,Q));
wolffd@0 34 mixmat0 = mk_stochastic(rand(Q,M));
wolffd@0 35 mu0 = rand(O,Q,M);
wolffd@0 36 Sigma0 = repmat(eye(O), [1 1 Q M]);
wolffd@0 37 bnet.CPD{1} = tabular_CPD(bnet, 1, prior0);
wolffd@0 38 bnet.CPD{2} = tabular_CPD(bnet, 2, mixmat0);
wolffd@0 39 %% we set the cov prior to 0 to give same results as HMM toolbox
wolffd@0 40 %bnet.CPD{3} = gaussian_CPD(bnet, 3, 'mean', mu0, 'cov', Sigma0, 'cov_prior_weight', 0);
wolffd@0 41 % new version of HMM toolbox uses the same default prior on Gaussians as BNT
wolffd@0 42 bnet.CPD{3} = gaussian_CPD(bnet, 3, 'mean', mu0, 'cov', Sigma0);
wolffd@0 43 bnet.CPD{4} = tabular_CPD(bnet, 4, transmat0);
wolffd@0 44
wolffd@0 45
wolffd@0 46
wolffd@0 47 T = 5; % fixed length sequences
wolffd@0 48
wolffd@0 49 engine = {};
wolffd@0 50 engine{end+1} = hmm_inf_engine(bnet);
wolffd@0 51 engine{end+1} = smoother_engine(jtree_2TBN_inf_engine(bnet));
wolffd@0 52 engine{end+1} = smoother_engine(hmm_2TBN_inf_engine(bnet));
wolffd@0 53 if 0
wolffd@0 54 engine{end+1} = jtree_unrolled_dbn_inf_engine(bnet, T);
wolffd@0 55 %engine{end+1} = frontier_inf_engine(bnet);
wolffd@0 56 engine{end+1} = bk_inf_engine(bnet, 'clusters', 'exact');
wolffd@0 57 engine{end+1} = jtree_dbn_inf_engine(bnet);
wolffd@0 58 end
wolffd@0 59
wolffd@0 60 inf_time = cmp_inference_dbn(bnet, engine, T);
wolffd@0 61
wolffd@0 62 ncases = 2;
wolffd@0 63 max_iter = 2;
wolffd@0 64 [learning_time, CPD, LL, cases] = cmp_learning_dbn(bnet, engine, T, 'ncases', ncases, 'max_iter', max_iter);
wolffd@0 65
wolffd@0 66 % Compare to HMM toolbox
wolffd@0 67
wolffd@0 68 data = zeros(O, T, ncases);
wolffd@0 69 for i=1:ncases
wolffd@0 70 data(:,:,i) = reshape(cell2num(cases{i}(onodes,:)), [O T]);
wolffd@0 71 end
wolffd@0 72 tic;
wolffd@0 73 [LL2, prior2, transmat2, mu2, Sigma2, mixmat2] = ...
wolffd@0 74 mhmm_em(data, prior0, transmat0, mu0, Sigma0, mixmat0, 'max_iter', max_iter);
wolffd@0 75 t=toc;
wolffd@0 76 disp(['HMM toolbox took ' num2str(t) ' seconds '])
wolffd@0 77
wolffd@0 78 for e = 1:length(engine)
wolffd@0 79 assert(approxeq(prior2, CPD{e,1}.CPT))
wolffd@0 80 assert(approxeq(mixmat2, CPD{e,2}.CPT))
wolffd@0 81 assert(approxeq(mu2, CPD{e,3}.mean))
wolffd@0 82 assert(approxeq(Sigma2, CPD{e,3}.cov))
wolffd@0 83 assert(approxeq(transmat2, CPD{e,4}.CPT))
wolffd@0 84 assert(approxeq(LL2, LL{e}))
wolffd@0 85 end