annotate toolboxes/FullBNT-1.0.7/bnt/examples/dynamic/HHMM/Square/mk_square_hhmm.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
rev   line source
wolffd@0 1 function bnet = mk_square_hhmm(discrete_obs, true_params, topright)
wolffd@0 2
wolffd@0 3 % Make a 3 level HHMM described by the following grammar
wolffd@0 4 %
wolffd@0 5 % Square -> CLK | CCK % clockwise or counterclockwise
wolffd@0 6 % CLK -> LR UD RL DU start on top left (1 2 3 4)
wolffd@0 7 % CCK -> RL UD LR DU if start at top right (3 2 1 4)
wolffd@0 8 % CCK -> UD LR DU RL if start at top left (2 1 4 3)
wolffd@0 9 %
wolffd@0 10 % LR = left-right, UD = up-down, RL = right-left, DU = down-up
wolffd@0 11 % LR, UD, RL, DU are sub HMMs.
wolffd@0 12 %
wolffd@0 13 % For discrete observations, the subHMMs are 2-state left-right.
wolffd@0 14 % LR emits L then l, etc.
wolffd@0 15 %
wolffd@0 16 % For cts observations, the subHMMs are 1 state.
wolffd@0 17 % LR emits a vector in the -> direction, with a little noise.
wolffd@0 18 % Since there is no constraint that we remain in the LR state as long as the RL state,
wolffd@0 19 % the sides of the square might have different lengths,
wolffd@0 20 % so the result is not really a square!
wolffd@0 21 %
wolffd@0 22 % If true_params = 0, we use random parameters at the top 2 levels
wolffd@0 23 % (ready for learning). At the bottom level, we use noisy versions
wolffd@0 24 % of the "true" observations.
wolffd@0 25 %
wolffd@0 26 % If topright=1, counter-clockwise starts at top right, not top left
wolffd@0 27 % This example was inspired by Ivanov and Bobick.
wolffd@0 28
wolffd@0 29 if nargin < 3, topright = 1; end
wolffd@0 30
wolffd@0 31 if 1 % discrete_obs
wolffd@0 32 Qsizes = [2 4 2];
wolffd@0 33 else
wolffd@0 34 Qsizes = [2 4 1];
wolffd@0 35 end
wolffd@0 36
wolffd@0 37 D = 3;
wolffd@0 38 Qnodes = 1:D;
wolffd@0 39 startprob = cell(1,D);
wolffd@0 40 transprob = cell(1,D);
wolffd@0 41 termprob = cell(1,D);
wolffd@0 42
wolffd@0 43 % LEVEL 1
wolffd@0 44
wolffd@0 45 startprob{1} = 'unif';
wolffd@0 46 transprob{1} = 'unif';
wolffd@0 47
wolffd@0 48 % LEVEL 2
wolffd@0 49
wolffd@0 50 if true_params
wolffd@0 51 startprob{2} = zeros(2, 4);
wolffd@0 52 startprob{2}(1, :) = [1 0 0 0];
wolffd@0 53 if topright
wolffd@0 54 startprob{2}(2, :) = [0 0 1 0];
wolffd@0 55 else
wolffd@0 56 startprob{2}(2, :) = [0 1 0 0];
wolffd@0 57 end
wolffd@0 58
wolffd@0 59 transprob{2} = zeros(4, 2, 4);
wolffd@0 60
wolffd@0 61 transprob{2}(:,1,:) = [0 1 0 0
wolffd@0 62 0 0 1 0
wolffd@0 63 0 0 0 1
wolffd@0 64 0 0 0 1]; % 4->e
wolffd@0 65 if topright
wolffd@0 66 transprob{2}(:,2,:) = [0 0 0 1
wolffd@0 67 1 0 0 0
wolffd@0 68 0 1 0 0
wolffd@0 69 0 0 0 1]; % 4->e
wolffd@0 70 else
wolffd@0 71 transprob{2}(:,2,:) = [0 0 0 1
wolffd@0 72 1 0 0 0
wolffd@0 73 0 0 1 0 % 3->e
wolffd@0 74 0 0 1 0];
wolffd@0 75 end
wolffd@0 76
wolffd@0 77 %termprob{2} = 'rightstop';
wolffd@0 78 termprob{2} = zeros(2,4);
wolffd@0 79 pfin = 0.8;
wolffd@0 80 termprob{2}(1,:) = [0 0 0 pfin]; % finish in state 4 (DU)
wolffd@0 81 if topright
wolffd@0 82 termprob{2}(2,:) = [0 0 0 pfin];
wolffd@0 83 else
wolffd@0 84 termprob{2}(2,:) = [0 0 pfin 0]; % finish in state 3 (RL)
wolffd@0 85 end
wolffd@0 86 else
wolffd@0 87 % In the unsupervised case, it is essential that we break symmetry
wolffd@0 88 % in the initial param estimates.
wolffd@0 89 %startprob{2} = 'unif';
wolffd@0 90 %transprob{2} = 'unif';
wolffd@0 91 %termprob{2} = 'unif';
wolffd@0 92 startprob{2} = 'rnd';
wolffd@0 93 transprob{2} = 'rnd';
wolffd@0 94 termprob{2} = 'rnd';
wolffd@0 95 end
wolffd@0 96
wolffd@0 97 % LEVEL 3
wolffd@0 98
wolffd@0 99 if 1 | true_params
wolffd@0 100 startprob{3} = 'leftstart';
wolffd@0 101 transprob{3} = 'leftright';
wolffd@0 102 termprob{3} = 'rightstop';
wolffd@0 103 else
wolffd@0 104 % If we want to be able to run a base-level model backwards...
wolffd@0 105 startprob{3} = 'rnd';
wolffd@0 106 transprob{3} = 'rnd';
wolffd@0 107 termprob{3} = 'rnd';
wolffd@0 108 end
wolffd@0 109
wolffd@0 110
wolffd@0 111 % OBS LEVEl
wolffd@0 112
wolffd@0 113 if discrete_obs
wolffd@0 114 % Initialise observations of lowest level primitives in a way which we can interpret
wolffd@0 115 chars = ['L', 'l', 'U', 'u', 'R', 'r', 'D', 'd'];
wolffd@0 116 L=find(chars=='L'); l=find(chars=='l');
wolffd@0 117 U=find(chars=='U'); u=find(chars=='u');
wolffd@0 118 R=find(chars=='R'); r=find(chars=='r');
wolffd@0 119 D=find(chars=='D'); d=find(chars=='d');
wolffd@0 120 Osize = length(chars);
wolffd@0 121
wolffd@0 122 if true_params
wolffd@0 123 p = 1; % makes each state fully observed
wolffd@0 124 else
wolffd@0 125 p = 0.9;
wolffd@0 126 end
wolffd@0 127
wolffd@0 128 obsprob = (1-p)*ones([4 2 Osize]);
wolffd@0 129 % Q2 Q3 O
wolffd@0 130 obsprob(1, 1, L) = p;
wolffd@0 131 obsprob(1, 2, l) = p;
wolffd@0 132 obsprob(2, 1, U) = p;
wolffd@0 133 obsprob(2, 2, u) = p;
wolffd@0 134 obsprob(3, 1, R) = p;
wolffd@0 135 obsprob(3, 2, r) = p;
wolffd@0 136 obsprob(4, 1, D) = p;
wolffd@0 137 obsprob(4, 2, d) = p;
wolffd@0 138 obsprob = mk_stochastic(obsprob);
wolffd@0 139 Oargs = {'CPT', obsprob};
wolffd@0 140 else
wolffd@0 141 % Initialise means of lowest level primitives in a way which we can interpret
wolffd@0 142 % These means are little vectors in the east, south, west, north directions.
wolffd@0 143 % (left-right=east, up-down=south, right-left=west, down-up=north)
wolffd@0 144 Osize = 2;
wolffd@0 145 mu = zeros(2, Qsizes(2), Qsizes(3));
wolffd@0 146 scale = 3;
wolffd@0 147 if true_params
wolffd@0 148 noise = 0;
wolffd@0 149 else
wolffd@0 150 noise = 0.5*scale;
wolffd@0 151 end
wolffd@0 152 for q3=1:Qsizes(3)
wolffd@0 153 mu(:, 1, q3) = scale*[1;0] + noise*rand(2,1);
wolffd@0 154 end
wolffd@0 155 for q3=1:Qsizes(3)
wolffd@0 156 mu(:, 2, q3) = scale*[0;-1] + noise*rand(2,1);
wolffd@0 157 end
wolffd@0 158 for q3=1:Qsizes(3)
wolffd@0 159 mu(:, 3, q3) = scale*[-1;0] + noise*rand(2,1);
wolffd@0 160 end
wolffd@0 161 for q3=1:Qsizes(3)
wolffd@0 162 mu(:, 4, q3) = scale*[0;1] + noise*rand(2,1);
wolffd@0 163 end
wolffd@0 164 Sigma = repmat(reshape(scale*eye(2), [2 2 1 1 ]), [1 1 Qsizes(2) Qsizes(3)]);
wolffd@0 165 Oargs = {'mean', mu, 'cov', Sigma, 'cov_type', 'diag'};
wolffd@0 166 end
wolffd@0 167
wolffd@0 168 if discrete_obs
wolffd@0 169 selfprob = 0.5;
wolffd@0 170 else
wolffd@0 171 selfprob = 0.95;
wolffd@0 172 % If less than this, it won't look like a square
wolffd@0 173 % because it doesn't spend enough time in each state
wolffd@0 174 % Unfortunately, the variance on durations (lengths of each side)
wolffd@0 175 % is very large
wolffd@0 176 end
wolffd@0 177 bnet = mk_hhmm('Qsizes', Qsizes, 'Osize', Osize', 'discrete_obs', discrete_obs, ...
wolffd@0 178 'Oargs', Oargs, 'Ops', Qnodes(2:3), 'selfprob', selfprob, ...
wolffd@0 179 'startprob', startprob, 'transprob', transprob, 'termprob', termprob);
wolffd@0 180