wolffd@0
|
1 function CPD = update_ess(CPD, fmarginal, evidence, ns, cnodes, hidden_bitv)
|
wolffd@0
|
2 % UPDATE_ESS Update the Expected Sufficient Statistics of a CPD (MLP)
|
wolffd@0
|
3 % CPD = update_ess(CPD, family_marginal, evidence, node_sizes, cnodes, hidden_bitv)
|
wolffd@0
|
4 %
|
wolffd@0
|
5 % fmarginal = overall posterior distribution of self and its parents
|
wolffd@0
|
6 % fmarginal(i1,i2...,ik,s)=prob(Pa1=i1,...,Pak=ik, self=s| X)
|
wolffd@0
|
7 %
|
wolffd@0
|
8 % => 1) prob(self|Pa1,...,Pak)=fmarginal/prob(Pa1,...,Pak) with prob(Pa1,...,Pak)=sum{s,fmarginal}
|
wolffd@0
|
9 % [self estimation -> CPD.self_vals]
|
wolffd@0
|
10 % 2) prob(Pa1,...,Pak) [SCG weights -> CPD.eso_weights]
|
wolffd@0
|
11 %
|
wolffd@0
|
12 % Hidden_bitv is ignored
|
wolffd@0
|
13
|
wolffd@0
|
14 % Written by Pierpaolo Brutti
|
wolffd@0
|
15
|
wolffd@0
|
16 if ~adjustable_CPD(CPD), return; end
|
wolffd@0
|
17
|
wolffd@0
|
18 dom = fmarginal.domain;
|
wolffd@0
|
19 cdom = myintersect(dom, cnodes);
|
wolffd@0
|
20 assert(~any(isemptycell(evidence(cdom))));
|
wolffd@0
|
21 ns(cdom)=1;
|
wolffd@0
|
22
|
wolffd@0
|
23 self = dom(end);
|
wolffd@0
|
24 ps=dom(1:end-1);
|
wolffd@0
|
25 dpdom=mysetdiff(ps,cdom);
|
wolffd@0
|
26
|
wolffd@0
|
27 dnodes = mysetdiff(1:length(ns), cnodes);
|
wolffd@0
|
28
|
wolffd@0
|
29 ddom = myintersect(ps, dnodes); %
|
wolffd@0
|
30 if isempty(evidence{self}), % if self is hidden in what follow we must
|
wolffd@0
|
31 ddom = myintersect(dom, dnodes); % consider its dimension
|
wolffd@0
|
32 end %
|
wolffd@0
|
33
|
wolffd@0
|
34 odom = dom(~isemptycell(evidence(dom)));
|
wolffd@0
|
35 hdom = dom(isemptycell(evidence(dom))); % hidden parents in domain
|
wolffd@0
|
36
|
wolffd@0
|
37 dobs = myintersect(ddom, odom);
|
wolffd@0
|
38 dvals = cat(1, evidence{dobs});
|
wolffd@0
|
39 ens = ns; % effective node sizes
|
wolffd@0
|
40 ens(dobs) = 1;
|
wolffd@0
|
41
|
wolffd@0
|
42 dpsz=prod(ns(dpdom));
|
wolffd@0
|
43 S=prod(ens(ddom));
|
wolffd@0
|
44 subs = ind2subv(ens(ddom), 1:S);
|
wolffd@0
|
45 mask = find_equiv_posns(dobs, ddom);
|
wolffd@0
|
46 for i=1:length(mask),
|
wolffd@0
|
47 subs(:,mask(i)) = dvals(i);
|
wolffd@0
|
48 end
|
wolffd@0
|
49 supportedQs = subv2ind(ns(ddom), subs);
|
wolffd@0
|
50
|
wolffd@0
|
51 Qarity = prod(ns(ddom));
|
wolffd@0
|
52 if isempty(ddom),
|
wolffd@0
|
53 Qarity = 1;
|
wolffd@0
|
54 end
|
wolffd@0
|
55 fullm.T = zeros(Qarity, 1);
|
wolffd@0
|
56 fullm.T(supportedQs) = fmarginal.T(:);
|
wolffd@0
|
57
|
wolffd@0
|
58 % For dynamic (recurrent) net-------------------------------------------------------------
|
wolffd@0
|
59 % ----------------------------------------------------------------------------------------
|
wolffd@0
|
60 high=size(evidence,1); % slice height
|
wolffd@0
|
61 ss_ns=ns(1:high); % single slice nodes sizes
|
wolffd@0
|
62 pos=self; %
|
wolffd@0
|
63 slice_num=0; %
|
wolffd@0
|
64 while pos>high, %
|
wolffd@0
|
65 slice_num=slice_num+1; % find active slice
|
wolffd@0
|
66 pos=pos-high; % pos=self posistion into a single slice
|
wolffd@0
|
67 end %
|
wolffd@0
|
68
|
wolffd@0
|
69 last_dim=pos-1; %
|
wolffd@0
|
70 if isempty(evidence{self}), %
|
wolffd@0
|
71 last_dim=pos; %
|
wolffd@0
|
72 end % last_dim=last reshaping dimension
|
wolffd@0
|
73 reg=dom-slice_num*high;
|
wolffd@0
|
74 dex=myintersect(reg(find(reg>=0)), [1:last_dim]); %
|
wolffd@0
|
75 rs_dim=ss_ns(dex); % reshaping dimensions
|
wolffd@0
|
76
|
wolffd@0
|
77 if slice_num>0,
|
wolffd@0
|
78 act_slice=[]; past_ancest=[]; %
|
wolffd@0
|
79 act_slice=slice_num*high+[1:high]; % recover the active slice nodes
|
wolffd@0
|
80 % past_ancest=mysetdiff(ddom, act_slice);
|
wolffd@0
|
81 past_ancest=mysetdiff(ps, act_slice); % recover ancestors contained into past slices
|
wolffd@0
|
82 app=ns(past_ancest);
|
wolffd@0
|
83 rs_dim=[app(:)' rs_dim(:)']; %
|
wolffd@0
|
84 end %
|
wolffd@0
|
85 if length(rs_dim)==1, rs_dim=[1 rs_dim]; end %
|
wolffd@0
|
86 if size(rs_dim,1)~=1, rs_dim=rs_dim'; end %
|
wolffd@0
|
87
|
wolffd@0
|
88 fullm.T=reshape(fullm.T, rs_dim); % reshaping the marginal
|
wolffd@0
|
89
|
wolffd@0
|
90 % ----------------------------------------------------------------------------------------
|
wolffd@0
|
91 % ----------------------------------------------------------------------------------------
|
wolffd@0
|
92
|
wolffd@0
|
93 % X = cts parent, R = discrete self
|
wolffd@0
|
94
|
wolffd@0
|
95 % 1) observations vector -> CPD.parents_vals -------------------------------------------------
|
wolffd@0
|
96 x = cat(1, evidence{cdom});
|
wolffd@0
|
97
|
wolffd@0
|
98 % 2) weights vector -> CPD.eso_weights -------------------------------------------------------
|
wolffd@0
|
99 if isempty(evidence{self}) % R is hidden
|
wolffd@0
|
100 sum_over=length(rs_dim);
|
wolffd@0
|
101 app=sum(fullm.T, sum_over);
|
wolffd@0
|
102 pesi=reshape(app,[dpsz,1]);
|
wolffd@0
|
103 clear app;
|
wolffd@0
|
104 else
|
wolffd@0
|
105 pesi=reshape(fullm.T,[dpsz,1]);
|
wolffd@0
|
106 end
|
wolffd@0
|
107
|
wolffd@0
|
108 assert(approxeq(sum(pesi),1));
|
wolffd@0
|
109
|
wolffd@0
|
110 % 3) estimate (if R is hidden) or recover (if R is obs) self'value----------------------------
|
wolffd@0
|
111 if isempty(evidence{self}) % R is hidden
|
wolffd@0
|
112 app=mk_stochastic(fullm.T); % P(self|Pa1,...,Pak)=fmarginal/prob(Pa1,...,Pak)
|
wolffd@0
|
113 app=reshape(app,[dpsz ns(self)]); % matrix size: prod{j,ns(Paj)} x ns(self)
|
wolffd@0
|
114 r=app;
|
wolffd@0
|
115 clear app;
|
wolffd@0
|
116 else
|
wolffd@0
|
117 r = zeros(dpsz,ns(self));
|
wolffd@0
|
118 for i=1:dpsz
|
wolffd@0
|
119 if pesi(i)~=0, r(i,evidence{self}) = 1; end
|
wolffd@0
|
120 end
|
wolffd@0
|
121 end
|
wolffd@0
|
122 for i=1:dpsz
|
wolffd@0
|
123 if pesi(i) ~=0, assert(approxeq(sum(r(i,:)),1)); end
|
wolffd@0
|
124 end
|
wolffd@0
|
125
|
wolffd@0
|
126 CPD.nsamples = CPD.nsamples + 1;
|
wolffd@0
|
127 CPD.parent_vals(CPD.nsamples,:) = x(:)';
|
wolffd@0
|
128 for i=1:dpsz
|
wolffd@0
|
129 CPD.eso_weights(CPD.nsamples,:,i)=pesi(i);
|
wolffd@0
|
130 CPD.self_vals(CPD.nsamples,:,i) = r(i,:);
|
wolffd@0
|
131 end
|