wolffd@0
|
1 function CPD = maximize_params(CPD, temp)
|
wolffd@0
|
2 % MAXIMIZE_PARAMS Set the params of a hhmmQ node to their ML/MAP values.
|
wolffd@0
|
3 % CPD = maximize_params(CPD, temperature)
|
wolffd@0
|
4
|
wolffd@0
|
5 Qsz = CPD.Qsz;
|
wolffd@0
|
6 Qpsz = CPD.Qpsz;
|
wolffd@0
|
7
|
wolffd@0
|
8 if ~isempty(CPD.sub_CPD_start)
|
wolffd@0
|
9 CPD.sub_CPD_start = maximize_params(CPD.sub_CPD_start, temp);
|
wolffd@0
|
10 S = struct(CPD.sub_CPD_start);
|
wolffd@0
|
11 CPD.startprob = myreshape(S.CPT, [Qpsz Qsz]);
|
wolffd@0
|
12 %CPD.startprob = S.CPT;
|
wolffd@0
|
13 end
|
wolffd@0
|
14
|
wolffd@0
|
15 if 1
|
wolffd@0
|
16 % If we are in a state that can only go the end state,
|
wolffd@0
|
17 % we will never see a transition to another (non-end) state,
|
wolffd@0
|
18 % so counts(i,k,j)=0 (and termprob(k,i)=1).
|
wolffd@0
|
19 % We set counts(i,k,i)=1 in this case.
|
wolffd@0
|
20 % This will cause remove_hhmm_end_state to return a
|
wolffd@0
|
21 % stochastic matrix, but otherwise has no effect on EM.
|
wolffd@0
|
22 counts = get_field(CPD.sub_CPD_trans, 'counts');
|
wolffd@0
|
23 counts = reshape(counts, [Qsz Qpsz Qsz]);
|
wolffd@0
|
24 for k=1:Qpsz
|
wolffd@0
|
25 for i=1:Qsz
|
wolffd@0
|
26 if sum(counts(i,k,:))==0 % never witnessed a transition out of i
|
wolffd@0
|
27 counts(i,k,i)=1; % add self loop
|
wolffd@0
|
28 %fprintf('CPDQ d=%d i=%d k=%d\n', CPD.d, i, k);
|
wolffd@0
|
29 end
|
wolffd@0
|
30 end
|
wolffd@0
|
31 end
|
wolffd@0
|
32 CPD.sub_CPD_trans = set_fields(CPD.sub_CPD_trans, 'counts', counts(:));
|
wolffd@0
|
33 end
|
wolffd@0
|
34
|
wolffd@0
|
35 CPD.sub_CPD_trans = maximize_params(CPD.sub_CPD_trans, temp);
|
wolffd@0
|
36 S = struct(CPD.sub_CPD_trans);
|
wolffd@0
|
37 %CPD.transprob = S.CPT;
|
wolffd@0
|
38 CPD.transprob = myreshape(S.CPT, [Qsz Qpsz Qsz]);
|
wolffd@0
|
39
|
wolffd@0
|
40 CPD = update_CPT(CPD);
|