annotate toolboxes/FullBNT-1.0.7/bnt/CPDs/@gaussian_CPD/maximize_params.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
rev   line source
wolffd@0 1 function CPD = maximize_params(CPD, temp)
wolffd@0 2 % MAXIMIZE_PARAMS Set the params of a CPD to their ML values (Gaussian)
wolffd@0 3 % CPD = maximize_params(CPD, temperature)
wolffd@0 4 %
wolffd@0 5 % Temperature is currently ignored.
wolffd@0 6
wolffd@0 7 if ~adjustable_CPD(CPD), return; end
wolffd@0 8
wolffd@0 9
wolffd@0 10 if CPD.clamped_mean
wolffd@0 11 cl_mean = CPD.mean;
wolffd@0 12 else
wolffd@0 13 cl_mean = [];
wolffd@0 14 end
wolffd@0 15
wolffd@0 16 if CPD.clamped_cov
wolffd@0 17 cl_cov = CPD.cov;
wolffd@0 18 else
wolffd@0 19 cl_cov = [];
wolffd@0 20 end
wolffd@0 21
wolffd@0 22 if CPD.clamped_weights
wolffd@0 23 cl_weights = CPD.weights;
wolffd@0 24 else
wolffd@0 25 cl_weights = [];
wolffd@0 26 end
wolffd@0 27
wolffd@0 28 [ssz psz Q] = size(CPD.weights);
wolffd@0 29
wolffd@0 30 [ss cpsz dpsz] = size(CPD.weights); % ss = self size = ssz
wolffd@0 31 if cpsz > CPD.nsamples
wolffd@0 32 fprintf('gaussian_CPD/maximize_params: warning: input dimension (%d) > nsamples (%d)\n', ...
wolffd@0 33 cpsz, CPD.nsamples);
wolffd@0 34 end
wolffd@0 35
wolffd@0 36 prior = repmat(CPD.cov_prior_weight*eye(ssz,ssz), [1 1 Q]);
wolffd@0 37
wolffd@0 38
wolffd@0 39 [CPD.mean, CPD.cov, CPD.weights] = ...
wolffd@0 40 clg_Mstep(CPD.Wsum, CPD.WYsum, CPD.WYYsum, [], CPD.WXsum, CPD.WXXsum, CPD.WXYsum, ...
wolffd@0 41 'cov_type', CPD.cov_type, 'clamped_mean', cl_mean, ...
wolffd@0 42 'clamped_cov', cl_cov, 'clamped_weights', cl_weights, ...
wolffd@0 43 'tied_cov', CPD.tied_cov, ...
wolffd@0 44 'cov_prior', prior);
wolffd@0 45
wolffd@0 46 if 0
wolffd@0 47 CPD.mean = reshape(CPD.mean, [ss dpsz]);
wolffd@0 48 CPD.cov = reshape(CPD.cov, [ss ss dpsz]);
wolffd@0 49 CPD.weights = reshape(CPD.weights, [ss cpsz dpsz]);
wolffd@0 50 end
wolffd@0 51
wolffd@0 52 % Bug fix 11 May 2003 KPM
wolffd@0 53 % clg_Mstep collapses all discrete parents into one mega-node
wolffd@0 54 % but convert_to_CPT needs access to each parent separately
wolffd@0 55 sz = CPD.sizes;
wolffd@0 56 ss = sz(end);
wolffd@0 57
wolffd@0 58 % Bug fix KPM 20 May 2003:
wolffd@0 59 cpsz = sum(sz(CPD.cps));
wolffd@0 60 %if isempty(CPD.cps)
wolffd@0 61 % cpsz = 0;
wolffd@0 62 %else
wolffd@0 63 % cpsz = sz(CPD.cps);
wolffd@0 64 %end
wolffd@0 65 dpsz = sz(CPD.dps);
wolffd@0 66 CPD.mean = myreshape(CPD.mean, [ss dpsz]);
wolffd@0 67 CPD.cov = myreshape(CPD.cov, [ss ss dpsz]);
wolffd@0 68 CPD.weights = myreshape(CPD.weights, [ss cpsz dpsz]);