annotate toolboxes/FullBNT-1.0.7/KPMstats/linear_regression.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
rev   line source
wolffd@0 1 function [muY, SigmaY, weightsY] = linear_regression(X, Y, varargin)
wolffd@0 2 % LINEAR_REGRESSION Fit params for P(Y|X) = N(Y; W X + mu, Sigma)
wolffd@0 3 %
wolffd@0 4 % X(:, t) is the t'th input example
wolffd@0 5 % Y(:, t) is the t'th output example
wolffd@0 6 %
wolffd@0 7 % Kevin Murphy, August 2003
wolffd@0 8 %
wolffd@0 9 % This is a special case of cwr_em with 1 cluster.
wolffd@0 10 % You can also think of it as a front end to clg_Mstep.
wolffd@0 11
wolffd@0 12 [cov_typeY, clamp_weights, muY, SigmaY, weightsY,...
wolffd@0 13 cov_priorY, regress, clamp_covY] = process_options(...
wolffd@0 14 varargin, ...
wolffd@0 15 'cov_typeY', 'full', 'clamp_weights', 0, ...
wolffd@0 16 'muY', [], 'SigmaY', [], 'weightsY', [], ...
wolffd@0 17 'cov_priorY', [], 'regress', 1, 'clamp_covY', 0);
wolffd@0 18
wolffd@0 19 [nx N] = size(X);
wolffd@0 20 [ny N2] = size(Y);
wolffd@0 21 if N ~= N2
wolffd@0 22 error(sprintf('nsamples X (%d) ~= nsamples Y (%d)', N, N2));
wolffd@0 23 end
wolffd@0 24
wolffd@0 25 w = 1/N;
wolffd@0 26 WYbig = Y*w;
wolffd@0 27 WYY = WYbig * Y';
wolffd@0 28 WY = sum(WYbig, 2);
wolffd@0 29 WYTY = sum(diag(WYbig' * Y));
wolffd@0 30 if ~regress
wolffd@0 31 % This is just fitting an unconditional Gaussian
wolffd@0 32 weightsY = [];
wolffd@0 33 [muY, SigmaY] = ...
wolffd@0 34 mixgauss_Mstep(1, WY, WYY, WYTY, ...
wolffd@0 35 'cov_type', cov_typeY, 'cov_prior', cov_priorY);
wolffd@0 36 % There is a much easier way...
wolffd@0 37 assert(approxeq(muY, mean(Y')))
wolffd@0 38 assert(approxeq(SigmaY, cov(Y') + 0.01*eye(ny)))
wolffd@0 39 else
wolffd@0 40 % This is just linear regression
wolffd@0 41 WXbig = X*w;
wolffd@0 42 WXX = WXbig * X';
wolffd@0 43 WX = sum(WXbig, 2);
wolffd@0 44 WXTX = sum(diag(WXbig' * X));
wolffd@0 45 WXY = WXbig * Y';
wolffd@0 46 [muY, SigmaY, weightsY] = ...
wolffd@0 47 clg_Mstep(1, WY, WYY, WYTY, WX, WXX, WXY, ...
wolffd@0 48 'cov_type', cov_typeY, 'cov_prior', cov_priorY);
wolffd@0 49 end
wolffd@0 50 if clamp_covY, SigmaY = SigmaY; end
wolffd@0 51 if clamp_weights, weightsY = weightsY; end
wolffd@0 52
wolffd@0 53 if nx==1 & ny==1 & regress
wolffd@0 54 P = polyfit(X,Y); % Y = P(1) X^1 + P(2) X^0 = ax + b
wolffd@0 55 assert(approxeq(muY, P(2)))
wolffd@0 56 assert(approxeq(weightsY, P(1)))
wolffd@0 57 end
wolffd@0 58
wolffd@0 59 %%%%%%%% Test
wolffd@0 60 if 0
wolffd@0 61 c1 = randn(2,100); c2 = randn(2,100);
wolffd@0 62 y = c2(1,:); X = [ones(size(c1,2),1) c1'];
wolffd@0 63 b = regress(y(:), X); % stats toolbox
wolffd@0 64 [m,s,w] = linear_regression(c1, y);
wolffd@0 65 assert(approxeq(b(1),m))
wolffd@0 66 assert(approxeq(b(2), w(1)))
wolffd@0 67 assert(approxeq(b(3), w(2)))
wolffd@0 68 end