annotate toolboxes/FullBNT-1.0.7/KPMstats/cwr_em.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
rev   line source
wolffd@0 1 function cwr = cwr_em(X, Y, nc, varargin)
wolffd@0 2 % CWR_LEARN Fit the parameters of a cluster weighted regression model using EM
wolffd@0 3 % function cwr = cwr_learn(X, Y, ...)
wolffd@0 4 %
wolffd@0 5 % X(:, t) is the t'th input example
wolffd@0 6 % Y(:, t) is the t'th output example
wolffd@0 7 % nc is the number of clusters
wolffd@0 8 %
wolffd@0 9 % Kevin Murphy, May 2003
wolffd@0 10
wolffd@0 11 [max_iter, thresh, cov_typeX, cov_typeY, clamp_weights, ...
wolffd@0 12 muX, muY, SigmaX, SigmaY, weightsY, priorC, create_init_params, ...
wolffd@0 13 cov_priorX, cov_priorY, verbose, regress, clamp_covX, clamp_covY] = process_options(...
wolffd@0 14 varargin, 'max_iter', 10, 'thresh', 1e-2, 'cov_typeX', 'full', ...
wolffd@0 15 'cov_typeY', 'full', 'clamp_weights', 0, ...
wolffd@0 16 'muX', [], 'muY', [], 'SigmaX', [], 'SigmaY', [], 'weightsY', [], 'priorC', [], ...
wolffd@0 17 'create_init_params', 1, 'cov_priorX', [], 'cov_priorY', [], 'verbose', 0, ...
wolffd@0 18 'regress', 1, 'clamp_covX', 0, 'clamp_covY', 0);
wolffd@0 19
wolffd@0 20 [nx N] = size(X);
wolffd@0 21 [ny N2] = size(Y);
wolffd@0 22 if N ~= N2
wolffd@0 23 error(sprintf('nsamples X (%d) ~= nsamples Y (%d)', N, N2));
wolffd@0 24 end
wolffd@0 25 %if N < nx
wolffd@0 26 % fprintf('cwr_em warning: dim X (%d) > nsamples X (%d)\n', nx, N);
wolffd@0 27 %end
wolffd@0 28 if (N < nx) & regress
wolffd@0 29 fprintf('cwr_em warning: dim X = %d, nsamples X = %d\n', nx, N);
wolffd@0 30 end
wolffd@0 31 if (N < ny)
wolffd@0 32 fprintf('cwr_em warning: dim Y = %d, nsamples Y = %d\n', ny, N);
wolffd@0 33 end
wolffd@0 34 if (nc > N)
wolffd@0 35 error(sprintf('cwr_em: more centers (%d) than data', nc))
wolffd@0 36 end
wolffd@0 37
wolffd@0 38 if nc==1
wolffd@0 39 % No latent variable, so there is a closed-form solution
wolffd@0 40 w = 1/N;
wolffd@0 41 WYbig = Y*w;
wolffd@0 42 WYY = WYbig * Y';
wolffd@0 43 WY = sum(WYbig, 2);
wolffd@0 44 WYTY = sum(diag(WYbig' * Y));
wolffd@0 45 cwr.priorC = 1;
wolffd@0 46 cwr.SigmaX = [];
wolffd@0 47 if ~regress
wolffd@0 48 % This is just fitting an unconditional Gaussian
wolffd@0 49 cwr.weightsY = [];
wolffd@0 50 [cwr.muY, cwr.SigmaY] = ...
wolffd@0 51 mixgauss_Mstep(1, WY, WYY, WYTY, ...
wolffd@0 52 'cov_type', cov_typeY, 'cov_prior', cov_priorY);
wolffd@0 53 % There is a much easier way...
wolffd@0 54 assert(approxeq(cwr.muY, mean(Y')))
wolffd@0 55 assert(approxeq(cwr.SigmaY, cov(Y') + 0.01*eye(ny)))
wolffd@0 56 else
wolffd@0 57 % This is just linear regression
wolffd@0 58 WXbig = X*w;
wolffd@0 59 WXX = WXbig * X';
wolffd@0 60 WX = sum(WXbig, 2);
wolffd@0 61 WXTX = sum(diag(WXbig' * X));
wolffd@0 62 WXY = WXbig * Y';
wolffd@0 63 [cwr.muY, cwr.SigmaY, cwr.weightsY] = ...
wolffd@0 64 clg_Mstep(1, WY, WYY, WYTY, WX, WXX, WXY, ...
wolffd@0 65 'cov_type', cov_typeY, 'cov_prior', cov_priorY);
wolffd@0 66 end
wolffd@0 67 if clamp_covY, cwr.SigmaY = SigmaY; end
wolffd@0 68 if clamp_weights, cwr.weightsY = weightsY; end
wolffd@0 69 return;
wolffd@0 70 end
wolffd@0 71
wolffd@0 72
wolffd@0 73 if create_init_params
wolffd@0 74 [cwr.muX, cwr.SigmaX] = mixgauss_init(nc, X, cov_typeX);
wolffd@0 75 [cwr.muY, cwr.SigmaY] = mixgauss_init(nc, Y, cov_typeY);
wolffd@0 76 cwr.weightsY = zeros(ny, nx, nc);
wolffd@0 77 cwr.priorC = normalize(ones(nc,1));
wolffd@0 78 else
wolffd@0 79 cwr.muX = muX; cwr.muY = muY; cwr.SigmaX = SigmaX; cwr.SigmaY = SigmaY;
wolffd@0 80 cwr.weightsY = weightsY; cwr.priorC = priorC;
wolffd@0 81 end
wolffd@0 82
wolffd@0 83
wolffd@0 84 if clamp_covY, cwr.SigmaY = SigmaY; end
wolffd@0 85 if clamp_covX, cwr.SigmaX = SigmaX; end
wolffd@0 86 if clamp_weights, cwr.weightsY = weightsY; end
wolffd@0 87
wolffd@0 88 previous_loglik = -inf;
wolffd@0 89 num_iter = 1;
wolffd@0 90 converged = 0;
wolffd@0 91
wolffd@0 92 while (num_iter <= max_iter) & ~converged
wolffd@0 93
wolffd@0 94 % E step
wolffd@0 95
wolffd@0 96 [likXandY, likYgivenX, post] = cwr_prob(cwr, X, Y);
wolffd@0 97 loglik = sum(log(likXandY));
wolffd@0 98 % extract expected sufficient statistics
wolffd@0 99 w = sum(post,2); % post(c,t)
wolffd@0 100 WYY = zeros(ny, ny, nc);
wolffd@0 101 WY = zeros(ny, nc);
wolffd@0 102 WYTY = zeros(nc,1);
wolffd@0 103
wolffd@0 104 WXX = zeros(nx, nx, nc);
wolffd@0 105 WX = zeros(nx, nc);
wolffd@0 106 WXTX = zeros(nc, 1);
wolffd@0 107 WXY = zeros(nx,ny,nc);
wolffd@0 108 %WYY = repmat(reshape(w, [1 1 nc]), [ny ny 1]) .* repmat(Y*Y', [1 1 nc]);
wolffd@0 109 for c=1:nc
wolffd@0 110 weights = repmat(post(c,:), ny, 1);
wolffd@0 111 WYbig = Y .* weights;
wolffd@0 112 WYY(:,:,c) = WYbig * Y';
wolffd@0 113 WY(:,c) = sum(WYbig, 2);
wolffd@0 114 WYTY(c) = sum(diag(WYbig' * Y));
wolffd@0 115
wolffd@0 116 weights = repmat(post(c,:), nx, 1); % weights(nx, nsamples)
wolffd@0 117 WXbig = X .* weights;
wolffd@0 118 WXX(:,:,c) = WXbig * X';
wolffd@0 119 WX(:,c) = sum(WXbig, 2);
wolffd@0 120 WXTX(c) = sum(diag(WXbig' * X));
wolffd@0 121 WXY(:,:,c) = WXbig * Y';
wolffd@0 122 end
wolffd@0 123
wolffd@0 124 % M step
wolffd@0 125 % Q -> X is called Q->Y in Mstep_clg
wolffd@0 126 [cwr.muX, cwr.SigmaX] = mixgauss_Mstep(w, WX, WXX, WXTX, ...
wolffd@0 127 'cov_type', cov_typeX, 'cov_prior', cov_priorX);
wolffd@0 128 for c=1:nc
wolffd@0 129 assert(is_psd(cwr.SigmaX(:,:,c)))
wolffd@0 130 end
wolffd@0 131
wolffd@0 132 if clamp_weights % affects estimate of mu and Sigma
wolffd@0 133 W = cwr.weightsY;
wolffd@0 134 else
wolffd@0 135 W = [];
wolffd@0 136 end
wolffd@0 137 [cwr.muY, cwr.SigmaY, cwr.weightsY] = ...
wolffd@0 138 clg_Mstep(w, WY, WYY, WYTY, WX, WXX, WXY, ...
wolffd@0 139 'cov_type', cov_typeY, 'clamped_weights', W, ...
wolffd@0 140 'cov_prior', cov_priorY);
wolffd@0 141 %'xs', X, 'ys', Y, 'post', post); % debug
wolffd@0 142 %a = linspace(min(Y(2,:)), max(Y(2,:)), nc+2);
wolffd@0 143 %cwr.muY(2,:) = a(2:end-1);
wolffd@0 144
wolffd@0 145 cwr.priorC = normalize(w);
wolffd@0 146
wolffd@0 147 for c=1:nc
wolffd@0 148 assert(is_psd(cwr.SigmaY(:,:,c)))
wolffd@0 149 end
wolffd@0 150
wolffd@0 151 if clamp_covY, cwr.SigmaY = SigmaY; end
wolffd@0 152 if clamp_covX, cwr.SigmaX = SigmaX; end
wolffd@0 153 if clamp_weights, cwr.weightsY = weightsY; end
wolffd@0 154
wolffd@0 155 if verbose, fprintf(1, 'iteration %d, loglik = %f\n', num_iter, loglik); end
wolffd@0 156 num_iter = num_iter + 1;
wolffd@0 157 converged = em_converged(loglik, previous_loglik, thresh);
wolffd@0 158 previous_loglik = loglik;
wolffd@0 159
wolffd@0 160 end
wolffd@0 161