annotate toolboxes/FullBNT-1.0.7/HMM/pomdp_sample.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
rev   line source
wolffd@0 1 function [obs, hidden] = pomdp_sample(initial_prob, transmat, obsmat, act)
wolffd@0 2 % SAMPLE_POMDP Generate a random sequence from a Partially Observed Markov Decision Process.
wolffd@0 3 % [obs, hidden] = sample_pomdp(prior, transmat, obsmat, act)
wolffd@0 4 %
wolffd@0 5 % Inputs:
wolffd@0 6 % prior(i) = Pr(Q(1)=i)
wolffd@0 7 % transmat{a}(i,j) = Pr(Q(t)=j | Q(t-1)=i, A(t)=a)
wolffd@0 8 % obsmat(i,k) = Pr(Y(t)=k | Q(t)=i)
wolffd@0 9 % act(a) = A(t), so act(1) is ignored
wolffd@0 10 %
wolffd@0 11 % Output:
wolffd@0 12 % obs and hidden are vectors of length T=length(act)
wolffd@0 13
wolffd@0 14
wolffd@0 15 len = length(act);
wolffd@0 16 hidden = mdp_sample(initial_prob, transmat, act);
wolffd@0 17 obs = zeros(1, len);
wolffd@0 18 for t=1:len
wolffd@0 19 obs(t) = sample_discrete(obsmat(hidden(t),:));
wolffd@0 20 end