Mercurial > hg > camir-aes2014
annotate toolboxes/distance_learning/mlr/regularize/regularizeMKLDOD.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
rev | line source |
---|---|
wolffd@0 | 1 function r = regularizeMKLDOD(W, X, gradient) |
wolffd@0 | 2 % |
wolffd@0 | 3 % r = regularizeMKLDOD(W, X, gradient) |
wolffd@0 | 4 % |
wolffd@0 | 5 % |
wolffd@0 | 6 |
wolffd@0 | 7 [d,n,m] = size(X); |
wolffd@0 | 8 |
wolffd@0 | 9 if gradient |
wolffd@0 | 10 r = zeros(m,m,d); |
wolffd@0 | 11 for i = 1:m |
wolffd@0 | 12 r(i,i,:) = diag(X(:,:,i)); |
wolffd@0 | 13 for j = (i+1):m |
wolffd@0 | 14 r(i,j,:) = diag(X(:,:,i)) + diag(X(:,:,j)); |
wolffd@0 | 15 end |
wolffd@0 | 16 end |
wolffd@0 | 17 else |
wolffd@0 | 18 r = 0; |
wolffd@0 | 19 for i = 1:m |
wolffd@0 | 20 r = r + squeeze(W(i,i,:))' * diag(X(:,:,i)); |
wolffd@0 | 21 for j = (i+1):m |
wolffd@0 | 22 r = r + squeeze(W(i,j,:))' * (diag(X(:,:,i)) + diag(X(:,:,j))); |
wolffd@0 | 23 end |
wolffd@0 | 24 end |
wolffd@0 | 25 end |
wolffd@0 | 26 end |