annotate toolboxes/distance_learning/mlr/regularize/regularizeMKLDOD.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
rev   line source
wolffd@0 1 function r = regularizeMKLDOD(W, X, gradient)
wolffd@0 2 %
wolffd@0 3 % r = regularizeMKLDOD(W, X, gradient)
wolffd@0 4 %
wolffd@0 5 %
wolffd@0 6
wolffd@0 7 [d,n,m] = size(X);
wolffd@0 8
wolffd@0 9 if gradient
wolffd@0 10 r = zeros(m,m,d);
wolffd@0 11 for i = 1:m
wolffd@0 12 r(i,i,:) = diag(X(:,:,i));
wolffd@0 13 for j = (i+1):m
wolffd@0 14 r(i,j,:) = diag(X(:,:,i)) + diag(X(:,:,j));
wolffd@0 15 end
wolffd@0 16 end
wolffd@0 17 else
wolffd@0 18 r = 0;
wolffd@0 19 for i = 1:m
wolffd@0 20 r = r + squeeze(W(i,i,:))' * diag(X(:,:,i));
wolffd@0 21 for j = (i+1):m
wolffd@0 22 r = r + squeeze(W(i,j,:))' * (diag(X(:,:,i)) + diag(X(:,:,j)));
wolffd@0 23 end
wolffd@0 24 end
wolffd@0 25 end
wolffd@0 26 end