annotate toolboxes/distance_learning/mlr/distance/setDistanceDiag.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
rev   line source
wolffd@0 1 function D = setDistanceDiag(X, W, Ifrom, Ito)
wolffd@0 2 %
wolffd@0 3 % D = setDistanceDiag(X, W, Ifrom, Ito)
wolffd@0 4 %
wolffd@0 5 % X = d-by-n data matrix
wolffd@0 6 % W = d-by-1 PSD matrix
wolffd@0 7 % Ifrom = k-by-1 vector of source points
wolffd@0 8 % Ito = j-by-1 vector of destination points
wolffd@0 9 %
wolffd@0 10 % D = n-by-n matrix of squared euclidean distances from Ifrom to Ito
wolffd@0 11 % D is sparse, and only the rows corresponding to Ifrom and
wolffd@0 12 % columns corresponding to Ito are populated.
wolffd@0 13
wolffd@0 14 [d,n] = size(X);
wolffd@0 15 L = W.^0.5;
wolffd@0 16
wolffd@0 17 Vfrom = bsxfun(@times, L, X(:,Ifrom));
wolffd@0 18
wolffd@0 19 if nargin == 4
wolffd@0 20 Vto = bsxfun(@times, L, X(:,Ito));
wolffd@0 21 else
wolffd@0 22 Vto = bsxfun(@times, L, X);
wolffd@0 23 Ito = 1:n;
wolffd@0 24 end
wolffd@0 25
wolffd@0 26 D = distToFrom(n, Vto, Vfrom, Ito, Ifrom);
wolffd@0 27 end