wolffd@0
|
1 /***********************************************************************/
|
wolffd@0
|
2 /* */
|
wolffd@0
|
3 /* svm_learn_main.c */
|
wolffd@0
|
4 /* */
|
wolffd@0
|
5 /* Command line interface to the learning module of the */
|
wolffd@0
|
6 /* Support Vector Machine. */
|
wolffd@0
|
7 /* */
|
wolffd@0
|
8 /* Author: Thorsten Joachims */
|
wolffd@0
|
9 /* Date: 02.07.02 */
|
wolffd@0
|
10 /* */
|
wolffd@0
|
11 /* Copyright (c) 2000 Thorsten Joachims - All rights reserved */
|
wolffd@0
|
12 /* */
|
wolffd@0
|
13 /* This software is available for non-commercial use only. It must */
|
wolffd@0
|
14 /* not be modified and distributed without prior permission of the */
|
wolffd@0
|
15 /* author. The author is not responsible for implications from the */
|
wolffd@0
|
16 /* use of this software. */
|
wolffd@0
|
17 /* */
|
wolffd@0
|
18 /***********************************************************************/
|
wolffd@0
|
19
|
wolffd@0
|
20
|
wolffd@0
|
21 /* uncomment, if you want to use svm-learn out of C++ */
|
wolffd@0
|
22 /* extern "C" { */
|
wolffd@0
|
23 # include "svm_common.h"
|
wolffd@0
|
24 # include "svm_learn.h"
|
wolffd@0
|
25 /* } */
|
wolffd@0
|
26
|
wolffd@0
|
27 char docfile[200]; /* file with training examples */
|
wolffd@0
|
28 char modelfile[200]; /* file for resulting classifier */
|
wolffd@0
|
29 char restartfile[200]; /* file with initial alphas */
|
wolffd@0
|
30
|
wolffd@0
|
31 void read_input_parameters(int, char **, char *, char *, char *, long *,
|
wolffd@0
|
32 LEARN_PARM *, KERNEL_PARM *);
|
wolffd@0
|
33 void wait_any_key();
|
wolffd@0
|
34 void print_help();
|
wolffd@0
|
35
|
wolffd@0
|
36
|
wolffd@0
|
37
|
wolffd@0
|
38 int main (int argc, char* argv[])
|
wolffd@0
|
39 {
|
wolffd@0
|
40 DOC **docs; /* training examples */
|
wolffd@0
|
41 long totwords,totdoc,i;
|
wolffd@0
|
42 double *target;
|
wolffd@0
|
43 double *alpha_in=NULL;
|
wolffd@0
|
44 KERNEL_CACHE *kernel_cache;
|
wolffd@0
|
45 LEARN_PARM learn_parm;
|
wolffd@0
|
46 KERNEL_PARM kernel_parm;
|
wolffd@0
|
47 MODEL *model=(MODEL *)my_malloc(sizeof(MODEL));
|
wolffd@0
|
48
|
wolffd@0
|
49 read_input_parameters(argc,argv,docfile,modelfile,restartfile,&verbosity,
|
wolffd@0
|
50 &learn_parm,&kernel_parm);
|
wolffd@0
|
51 read_documents(docfile,&docs,&target,&totwords,&totdoc);
|
wolffd@0
|
52 if(restartfile[0]) alpha_in=read_alphas(restartfile,totdoc);
|
wolffd@0
|
53
|
wolffd@0
|
54 if(kernel_parm.kernel_type == LINEAR) { /* don't need the cache */
|
wolffd@0
|
55 kernel_cache=NULL;
|
wolffd@0
|
56 }
|
wolffd@0
|
57 else {
|
wolffd@0
|
58 /* Always get a new kernel cache. It is not possible to use the
|
wolffd@0
|
59 same cache for two different training runs */
|
wolffd@0
|
60 kernel_cache=kernel_cache_init(totdoc,learn_parm.kernel_cache_size);
|
wolffd@0
|
61 }
|
wolffd@0
|
62
|
wolffd@0
|
63 if(learn_parm.type == CLASSIFICATION) {
|
wolffd@0
|
64 svm_learn_classification(docs,target,totdoc,totwords,&learn_parm,
|
wolffd@0
|
65 &kernel_parm,kernel_cache,model,alpha_in);
|
wolffd@0
|
66 }
|
wolffd@0
|
67 else if(learn_parm.type == REGRESSION) {
|
wolffd@0
|
68 svm_learn_regression(docs,target,totdoc,totwords,&learn_parm,
|
wolffd@0
|
69 &kernel_parm,&kernel_cache,model);
|
wolffd@0
|
70 }
|
wolffd@0
|
71 else if(learn_parm.type == RANKING) {
|
wolffd@0
|
72 svm_learn_ranking(docs,target,totdoc,totwords,&learn_parm,
|
wolffd@0
|
73 &kernel_parm,&kernel_cache,model);
|
wolffd@0
|
74 }
|
wolffd@0
|
75 else if(learn_parm.type == OPTIMIZATION) {
|
wolffd@0
|
76 svm_learn_optimization(docs,target,totdoc,totwords,&learn_parm,
|
wolffd@0
|
77 &kernel_parm,kernel_cache,model,alpha_in);
|
wolffd@0
|
78 }
|
wolffd@0
|
79
|
wolffd@0
|
80 if(kernel_cache) {
|
wolffd@0
|
81 /* Free the memory used for the cache. */
|
wolffd@0
|
82 kernel_cache_cleanup(kernel_cache);
|
wolffd@0
|
83 }
|
wolffd@0
|
84
|
wolffd@0
|
85 /* Warning: The model contains references to the original data 'docs'.
|
wolffd@0
|
86 If you want to free the original data, and only keep the model, you
|
wolffd@0
|
87 have to make a deep copy of 'model'. */
|
wolffd@0
|
88 /* deep_copy_of_model=copy_model(model); */
|
wolffd@0
|
89 write_model(modelfile,model);
|
wolffd@0
|
90
|
wolffd@0
|
91 free(alpha_in);
|
wolffd@0
|
92 free_model(model,0);
|
wolffd@0
|
93 for(i=0;i<totdoc;i++)
|
wolffd@0
|
94 free_example(docs[i],1);
|
wolffd@0
|
95 free(docs);
|
wolffd@0
|
96 free(target);
|
wolffd@0
|
97
|
wolffd@0
|
98 return(0);
|
wolffd@0
|
99 }
|
wolffd@0
|
100
|
wolffd@0
|
101 /*---------------------------------------------------------------------------*/
|
wolffd@0
|
102
|
wolffd@0
|
103 void read_input_parameters(int argc,char *argv[],char *docfile,char *modelfile,
|
wolffd@0
|
104 char *restartfile,long *verbosity,
|
wolffd@0
|
105 LEARN_PARM *learn_parm,KERNEL_PARM *kernel_parm)
|
wolffd@0
|
106 {
|
wolffd@0
|
107 long i;
|
wolffd@0
|
108 char type[100];
|
wolffd@0
|
109
|
wolffd@0
|
110 /* set default */
|
wolffd@0
|
111 strcpy (modelfile, "svm_model");
|
wolffd@0
|
112 strcpy (learn_parm->predfile, "trans_predictions");
|
wolffd@0
|
113 strcpy (learn_parm->alphafile, "");
|
wolffd@0
|
114 strcpy (restartfile, "");
|
wolffd@0
|
115 (*verbosity)=1;
|
wolffd@0
|
116 learn_parm->biased_hyperplane=1;
|
wolffd@0
|
117 learn_parm->sharedslack=0;
|
wolffd@0
|
118 learn_parm->remove_inconsistent=0;
|
wolffd@0
|
119 learn_parm->skip_final_opt_check=0;
|
wolffd@0
|
120 learn_parm->svm_maxqpsize=10;
|
wolffd@0
|
121 learn_parm->svm_newvarsinqp=0;
|
wolffd@0
|
122 learn_parm->svm_iter_to_shrink=-9999;
|
wolffd@0
|
123 learn_parm->maxiter=100000;
|
wolffd@0
|
124 learn_parm->kernel_cache_size=40;
|
wolffd@0
|
125 learn_parm->svm_c=0.0;
|
wolffd@0
|
126 learn_parm->eps=0.1;
|
wolffd@0
|
127 learn_parm->transduction_posratio=-1.0;
|
wolffd@0
|
128 learn_parm->svm_costratio=1.0;
|
wolffd@0
|
129 learn_parm->svm_costratio_unlab=1.0;
|
wolffd@0
|
130 learn_parm->svm_unlabbound=1E-5;
|
wolffd@0
|
131 learn_parm->epsilon_crit=0.001;
|
wolffd@0
|
132 learn_parm->epsilon_a=1E-15;
|
wolffd@0
|
133 learn_parm->compute_loo=0;
|
wolffd@0
|
134 learn_parm->rho=1.0;
|
wolffd@0
|
135 learn_parm->xa_depth=0;
|
wolffd@0
|
136 kernel_parm->kernel_type=0;
|
wolffd@0
|
137 kernel_parm->poly_degree=3;
|
wolffd@0
|
138 kernel_parm->rbf_gamma=1.0;
|
wolffd@0
|
139 kernel_parm->coef_lin=1;
|
wolffd@0
|
140 kernel_parm->coef_const=1;
|
wolffd@0
|
141 strcpy(kernel_parm->custom,"empty");
|
wolffd@0
|
142 strcpy(type,"c");
|
wolffd@0
|
143
|
wolffd@0
|
144 for(i=1;(i<argc) && ((argv[i])[0] == '-');i++) {
|
wolffd@0
|
145 switch ((argv[i])[1])
|
wolffd@0
|
146 {
|
wolffd@0
|
147 case '?': print_help(); exit(0);
|
wolffd@0
|
148 case 'z': i++; strcpy(type,argv[i]); break;
|
wolffd@0
|
149 case 'v': i++; (*verbosity)=atol(argv[i]); break;
|
wolffd@0
|
150 case 'b': i++; learn_parm->biased_hyperplane=atol(argv[i]); break;
|
wolffd@0
|
151 case 'i': i++; learn_parm->remove_inconsistent=atol(argv[i]); break;
|
wolffd@0
|
152 case 'f': i++; learn_parm->skip_final_opt_check=!atol(argv[i]); break;
|
wolffd@0
|
153 case 'q': i++; learn_parm->svm_maxqpsize=atol(argv[i]); break;
|
wolffd@0
|
154 case 'n': i++; learn_parm->svm_newvarsinqp=atol(argv[i]); break;
|
wolffd@0
|
155 case '#': i++; learn_parm->maxiter=atol(argv[i]); break;
|
wolffd@0
|
156 case 'h': i++; learn_parm->svm_iter_to_shrink=atol(argv[i]); break;
|
wolffd@0
|
157 case 'm': i++; learn_parm->kernel_cache_size=atol(argv[i]); break;
|
wolffd@0
|
158 case 'c': i++; learn_parm->svm_c=atof(argv[i]); break;
|
wolffd@0
|
159 case 'w': i++; learn_parm->eps=atof(argv[i]); break;
|
wolffd@0
|
160 case 'p': i++; learn_parm->transduction_posratio=atof(argv[i]); break;
|
wolffd@0
|
161 case 'j': i++; learn_parm->svm_costratio=atof(argv[i]); break;
|
wolffd@0
|
162 case 'e': i++; learn_parm->epsilon_crit=atof(argv[i]); break;
|
wolffd@0
|
163 case 'o': i++; learn_parm->rho=atof(argv[i]); break;
|
wolffd@0
|
164 case 'k': i++; learn_parm->xa_depth=atol(argv[i]); break;
|
wolffd@0
|
165 case 'x': i++; learn_parm->compute_loo=atol(argv[i]); break;
|
wolffd@0
|
166 case 't': i++; kernel_parm->kernel_type=atol(argv[i]); break;
|
wolffd@0
|
167 case 'd': i++; kernel_parm->poly_degree=atol(argv[i]); break;
|
wolffd@0
|
168 case 'g': i++; kernel_parm->rbf_gamma=atof(argv[i]); break;
|
wolffd@0
|
169 case 's': i++; kernel_parm->coef_lin=atof(argv[i]); break;
|
wolffd@0
|
170 case 'r': i++; kernel_parm->coef_const=atof(argv[i]); break;
|
wolffd@0
|
171 case 'u': i++; strcpy(kernel_parm->custom,argv[i]); break;
|
wolffd@0
|
172 case 'l': i++; strcpy(learn_parm->predfile,argv[i]); break;
|
wolffd@0
|
173 case 'a': i++; strcpy(learn_parm->alphafile,argv[i]); break;
|
wolffd@0
|
174 case 'y': i++; strcpy(restartfile,argv[i]); break;
|
wolffd@0
|
175 default: printf("\nUnrecognized option %s!\n\n",argv[i]);
|
wolffd@0
|
176 print_help();
|
wolffd@0
|
177 exit(0);
|
wolffd@0
|
178 }
|
wolffd@0
|
179 }
|
wolffd@0
|
180 if(i>=argc) {
|
wolffd@0
|
181 printf("\nNot enough input parameters!\n\n");
|
wolffd@0
|
182 wait_any_key();
|
wolffd@0
|
183 print_help();
|
wolffd@0
|
184 exit(0);
|
wolffd@0
|
185 }
|
wolffd@0
|
186 strcpy (docfile, argv[i]);
|
wolffd@0
|
187 if((i+1)<argc) {
|
wolffd@0
|
188 strcpy (modelfile, argv[i+1]);
|
wolffd@0
|
189 }
|
wolffd@0
|
190 if(learn_parm->svm_iter_to_shrink == -9999) {
|
wolffd@0
|
191 if(kernel_parm->kernel_type == LINEAR)
|
wolffd@0
|
192 learn_parm->svm_iter_to_shrink=2;
|
wolffd@0
|
193 else
|
wolffd@0
|
194 learn_parm->svm_iter_to_shrink=100;
|
wolffd@0
|
195 }
|
wolffd@0
|
196 if(strcmp(type,"c")==0) {
|
wolffd@0
|
197 learn_parm->type=CLASSIFICATION;
|
wolffd@0
|
198 }
|
wolffd@0
|
199 else if(strcmp(type,"r")==0) {
|
wolffd@0
|
200 learn_parm->type=REGRESSION;
|
wolffd@0
|
201 }
|
wolffd@0
|
202 else if(strcmp(type,"p")==0) {
|
wolffd@0
|
203 learn_parm->type=RANKING;
|
wolffd@0
|
204 }
|
wolffd@0
|
205 else if(strcmp(type,"o")==0) {
|
wolffd@0
|
206 learn_parm->type=OPTIMIZATION;
|
wolffd@0
|
207 }
|
wolffd@0
|
208 else if(strcmp(type,"s")==0) {
|
wolffd@0
|
209 learn_parm->type=OPTIMIZATION;
|
wolffd@0
|
210 learn_parm->sharedslack=1;
|
wolffd@0
|
211 }
|
wolffd@0
|
212 else {
|
wolffd@0
|
213 printf("\nUnknown type '%s': Valid types are 'c' (classification), 'r' regession, and 'p' preference ranking.\n",type);
|
wolffd@0
|
214 wait_any_key();
|
wolffd@0
|
215 print_help();
|
wolffd@0
|
216 exit(0);
|
wolffd@0
|
217 }
|
wolffd@0
|
218 if((learn_parm->skip_final_opt_check)
|
wolffd@0
|
219 && (kernel_parm->kernel_type == LINEAR)) {
|
wolffd@0
|
220 printf("\nIt does not make sense to skip the final optimality check for linear kernels.\n\n");
|
wolffd@0
|
221 learn_parm->skip_final_opt_check=0;
|
wolffd@0
|
222 }
|
wolffd@0
|
223 if((learn_parm->skip_final_opt_check)
|
wolffd@0
|
224 && (learn_parm->remove_inconsistent)) {
|
wolffd@0
|
225 printf("\nIt is necessary to do the final optimality check when removing inconsistent \nexamples.\n");
|
wolffd@0
|
226 wait_any_key();
|
wolffd@0
|
227 print_help();
|
wolffd@0
|
228 exit(0);
|
wolffd@0
|
229 }
|
wolffd@0
|
230 if((learn_parm->svm_maxqpsize<2)) {
|
wolffd@0
|
231 printf("\nMaximum size of QP-subproblems not in valid range: %ld [2..]\n",learn_parm->svm_maxqpsize);
|
wolffd@0
|
232 wait_any_key();
|
wolffd@0
|
233 print_help();
|
wolffd@0
|
234 exit(0);
|
wolffd@0
|
235 }
|
wolffd@0
|
236 if((learn_parm->svm_maxqpsize<learn_parm->svm_newvarsinqp)) {
|
wolffd@0
|
237 printf("\nMaximum size of QP-subproblems [%ld] must be larger than the number of\n",learn_parm->svm_maxqpsize);
|
wolffd@0
|
238 printf("new variables [%ld] entering the working set in each iteration.\n",learn_parm->svm_newvarsinqp);
|
wolffd@0
|
239 wait_any_key();
|
wolffd@0
|
240 print_help();
|
wolffd@0
|
241 exit(0);
|
wolffd@0
|
242 }
|
wolffd@0
|
243 if(learn_parm->svm_iter_to_shrink<1) {
|
wolffd@0
|
244 printf("\nMaximum number of iterations for shrinking not in valid range: %ld [1,..]\n",learn_parm->svm_iter_to_shrink);
|
wolffd@0
|
245 wait_any_key();
|
wolffd@0
|
246 print_help();
|
wolffd@0
|
247 exit(0);
|
wolffd@0
|
248 }
|
wolffd@0
|
249 if(learn_parm->svm_c<0) {
|
wolffd@0
|
250 printf("\nThe C parameter must be greater than zero!\n\n");
|
wolffd@0
|
251 wait_any_key();
|
wolffd@0
|
252 print_help();
|
wolffd@0
|
253 exit(0);
|
wolffd@0
|
254 }
|
wolffd@0
|
255 if(learn_parm->transduction_posratio>1) {
|
wolffd@0
|
256 printf("\nThe fraction of unlabeled examples to classify as positives must\n");
|
wolffd@0
|
257 printf("be less than 1.0 !!!\n\n");
|
wolffd@0
|
258 wait_any_key();
|
wolffd@0
|
259 print_help();
|
wolffd@0
|
260 exit(0);
|
wolffd@0
|
261 }
|
wolffd@0
|
262 if(learn_parm->svm_costratio<=0) {
|
wolffd@0
|
263 printf("\nThe COSTRATIO parameter must be greater than zero!\n\n");
|
wolffd@0
|
264 wait_any_key();
|
wolffd@0
|
265 print_help();
|
wolffd@0
|
266 exit(0);
|
wolffd@0
|
267 }
|
wolffd@0
|
268 if(learn_parm->epsilon_crit<=0) {
|
wolffd@0
|
269 printf("\nThe epsilon parameter must be greater than zero!\n\n");
|
wolffd@0
|
270 wait_any_key();
|
wolffd@0
|
271 print_help();
|
wolffd@0
|
272 exit(0);
|
wolffd@0
|
273 }
|
wolffd@0
|
274 if(learn_parm->rho<0) {
|
wolffd@0
|
275 printf("\nThe parameter rho for xi/alpha-estimates and leave-one-out pruning must\n");
|
wolffd@0
|
276 printf("be greater than zero (typically 1.0 or 2.0, see T. Joachims, Estimating the\n");
|
wolffd@0
|
277 printf("Generalization Performance of an SVM Efficiently, ICML, 2000.)!\n\n");
|
wolffd@0
|
278 wait_any_key();
|
wolffd@0
|
279 print_help();
|
wolffd@0
|
280 exit(0);
|
wolffd@0
|
281 }
|
wolffd@0
|
282 if((learn_parm->xa_depth<0) || (learn_parm->xa_depth>100)) {
|
wolffd@0
|
283 printf("\nThe parameter depth for ext. xi/alpha-estimates must be in [0..100] (zero\n");
|
wolffd@0
|
284 printf("for switching to the conventional xa/estimates described in T. Joachims,\n");
|
wolffd@0
|
285 printf("Estimating the Generalization Performance of an SVM Efficiently, ICML, 2000.)\n");
|
wolffd@0
|
286 wait_any_key();
|
wolffd@0
|
287 print_help();
|
wolffd@0
|
288 exit(0);
|
wolffd@0
|
289 }
|
wolffd@0
|
290 }
|
wolffd@0
|
291
|
wolffd@0
|
292 void wait_any_key()
|
wolffd@0
|
293 {
|
wolffd@0
|
294 printf("\n(more)\n");
|
wolffd@0
|
295 (void)getc(stdin);
|
wolffd@0
|
296 }
|
wolffd@0
|
297
|
wolffd@0
|
298 void print_help()
|
wolffd@0
|
299 {
|
wolffd@0
|
300 printf("\nSVM-light %s: Support Vector Machine, learning module %s\n",VERSION,VERSION_DATE);
|
wolffd@0
|
301 copyright_notice();
|
wolffd@0
|
302 printf(" usage: svm_learn [options] example_file model_file\n\n");
|
wolffd@0
|
303 printf("Arguments:\n");
|
wolffd@0
|
304 printf(" example_file-> file with training data\n");
|
wolffd@0
|
305 printf(" model_file -> file to store learned decision rule in\n");
|
wolffd@0
|
306
|
wolffd@0
|
307 printf("General options:\n");
|
wolffd@0
|
308 printf(" -? -> this help\n");
|
wolffd@0
|
309 printf(" -v [0..3] -> verbosity level (default 1)\n");
|
wolffd@0
|
310 printf("Learning options:\n");
|
wolffd@0
|
311 printf(" -z {c,r,p} -> select between classification (c), regression (r),\n");
|
wolffd@0
|
312 printf(" and preference ranking (p) (default classification)\n");
|
wolffd@0
|
313 printf(" -c float -> C: trade-off between training error\n");
|
wolffd@0
|
314 printf(" and margin (default [avg. x*x]^-1)\n");
|
wolffd@0
|
315 printf(" -w [0..] -> epsilon width of tube for regression\n");
|
wolffd@0
|
316 printf(" (default 0.1)\n");
|
wolffd@0
|
317 printf(" -j float -> Cost: cost-factor, by which training errors on\n");
|
wolffd@0
|
318 printf(" positive examples outweight errors on negative\n");
|
wolffd@0
|
319 printf(" examples (default 1) (see [4])\n");
|
wolffd@0
|
320 printf(" -b [0,1] -> use biased hyperplane (i.e. x*w+b>0) instead\n");
|
wolffd@0
|
321 printf(" of unbiased hyperplane (i.e. x*w>0) (default 1)\n");
|
wolffd@0
|
322 printf(" -i [0,1] -> remove inconsistent training examples\n");
|
wolffd@0
|
323 printf(" and retrain (default 0)\n");
|
wolffd@0
|
324 printf("Performance estimation options:\n");
|
wolffd@0
|
325 printf(" -x [0,1] -> compute leave-one-out estimates (default 0)\n");
|
wolffd@0
|
326 printf(" (see [5])\n");
|
wolffd@0
|
327 printf(" -o ]0..2] -> value of rho for XiAlpha-estimator and for pruning\n");
|
wolffd@0
|
328 printf(" leave-one-out computation (default 1.0) (see [2])\n");
|
wolffd@0
|
329 printf(" -k [0..100] -> search depth for extended XiAlpha-estimator \n");
|
wolffd@0
|
330 printf(" (default 0)\n");
|
wolffd@0
|
331 printf("Transduction options (see [3]):\n");
|
wolffd@0
|
332 printf(" -p [0..1] -> fraction of unlabeled examples to be classified\n");
|
wolffd@0
|
333 printf(" into the positive class (default is the ratio of\n");
|
wolffd@0
|
334 printf(" positive and negative examples in the training data)\n");
|
wolffd@0
|
335 printf("Kernel options:\n");
|
wolffd@0
|
336 printf(" -t int -> type of kernel function:\n");
|
wolffd@0
|
337 printf(" 0: linear (default)\n");
|
wolffd@0
|
338 printf(" 1: polynomial (s a*b+c)^d\n");
|
wolffd@0
|
339 printf(" 2: radial basis function exp(-gamma ||a-b||^2)\n");
|
wolffd@0
|
340 printf(" 3: sigmoid tanh(s a*b + c)\n");
|
wolffd@0
|
341 printf(" 4: user defined kernel from kernel.h\n");
|
wolffd@0
|
342 printf(" -d int -> parameter d in polynomial kernel\n");
|
wolffd@0
|
343 printf(" -g float -> parameter gamma in rbf kernel\n");
|
wolffd@0
|
344 printf(" -s float -> parameter s in sigmoid/poly kernel\n");
|
wolffd@0
|
345 printf(" -r float -> parameter c in sigmoid/poly kernel\n");
|
wolffd@0
|
346 printf(" -u string -> parameter of user defined kernel\n");
|
wolffd@0
|
347 printf("Optimization options (see [1]):\n");
|
wolffd@0
|
348 printf(" -q [2..] -> maximum size of QP-subproblems (default 10)\n");
|
wolffd@0
|
349 printf(" -n [2..q] -> number of new variables entering the working set\n");
|
wolffd@0
|
350 printf(" in each iteration (default n = q). Set n<q to prevent\n");
|
wolffd@0
|
351 printf(" zig-zagging.\n");
|
wolffd@0
|
352 printf(" -m [5..] -> size of cache for kernel evaluations in MB (default 40)\n");
|
wolffd@0
|
353 printf(" The larger the faster...\n");
|
wolffd@0
|
354 printf(" -e float -> eps: Allow that error for termination criterion\n");
|
wolffd@0
|
355 printf(" [y [w*x+b] - 1] >= eps (default 0.001)\n");
|
wolffd@0
|
356 printf(" -y [0,1] -> restart the optimization from alpha values in file\n");
|
wolffd@0
|
357 printf(" specified by -a option. (default 0)\n");
|
wolffd@0
|
358 printf(" -h [5..] -> number of iterations a variable needs to be\n");
|
wolffd@0
|
359 printf(" optimal before considered for shrinking (default 100)\n");
|
wolffd@0
|
360 printf(" -f [0,1] -> do final optimality check for variables removed\n");
|
wolffd@0
|
361 printf(" by shrinking. Although this test is usually \n");
|
wolffd@0
|
362 printf(" positive, there is no guarantee that the optimum\n");
|
wolffd@0
|
363 printf(" was found if the test is omitted. (default 1)\n");
|
wolffd@0
|
364 printf(" -y string -> if option is given, reads alphas from file with given\n");
|
wolffd@0
|
365 printf(" and uses them as starting point. (default 'disabled')\n");
|
wolffd@0
|
366 printf(" -# int -> terminate optimization, if no progress after this\n");
|
wolffd@0
|
367 printf(" number of iterations. (default 100000)\n");
|
wolffd@0
|
368 printf("Output options:\n");
|
wolffd@0
|
369 printf(" -l string -> file to write predicted labels of unlabeled\n");
|
wolffd@0
|
370 printf(" examples into after transductive learning\n");
|
wolffd@0
|
371 printf(" -a string -> write all alphas to this file after learning\n");
|
wolffd@0
|
372 printf(" (in the same order as in the training set)\n");
|
wolffd@0
|
373 wait_any_key();
|
wolffd@0
|
374 printf("\nMore details in:\n");
|
wolffd@0
|
375 printf("[1] T. Joachims, Making Large-Scale SVM Learning Practical. Advances in\n");
|
wolffd@0
|
376 printf(" Kernel Methods - Support Vector Learning, B. Schölkopf and C. Burges and\n");
|
wolffd@0
|
377 printf(" A. Smola (ed.), MIT Press, 1999.\n");
|
wolffd@0
|
378 printf("[2] T. Joachims, Estimating the Generalization performance of an SVM\n");
|
wolffd@0
|
379 printf(" Efficiently. International Conference on Machine Learning (ICML), 2000.\n");
|
wolffd@0
|
380 printf("[3] T. Joachims, Transductive Inference for Text Classification using Support\n");
|
wolffd@0
|
381 printf(" Vector Machines. International Conference on Machine Learning (ICML),\n");
|
wolffd@0
|
382 printf(" 1999.\n");
|
wolffd@0
|
383 printf("[4] K. Morik, P. Brockhausen, and T. Joachims, Combining statistical learning\n");
|
wolffd@0
|
384 printf(" with a knowledge-based approach - A case study in intensive care \n");
|
wolffd@0
|
385 printf(" monitoring. International Conference on Machine Learning (ICML), 1999.\n");
|
wolffd@0
|
386 printf("[5] T. Joachims, Learning to Classify Text Using Support Vector\n");
|
wolffd@0
|
387 printf(" Machines: Methods, Theory, and Algorithms. Dissertation, Kluwer,\n");
|
wolffd@0
|
388 printf(" 2002.\n\n");
|
wolffd@0
|
389 }
|
wolffd@0
|
390
|
wolffd@0
|
391
|