annotate toolboxes/MIRtoolbox1.3.2/MIRToolbox/mirrolloff.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
rev   line source
wolffd@0 1 function varargout = mirrolloff(x,varargin)
wolffd@0 2 % r = mirrolloff(s) calculates the spectral roll-off in Hz.
wolffd@0 3 % Optional arguments:
wolffd@0 4 % r = mirrolloff(s,'Threshold',p) specifies the energy threshold in
wolffd@0 5 % percentage. (Default: .85)
wolffd@0 6 % p can be either a value between 0 and 1. But if p exceeds 1, it
wolffd@0 7 % is understood as a percentage, i.e. between 1 and 100.
wolffd@0 8 % In other words, r is the frequency under which p percents
wolffd@0 9 % of the spectral energy is distributed.
wolffd@0 10 %
wolffd@0 11 % Typical values for the energy threshold:
wolffd@0 12 % 85% in G. Tzanetakis, P. Cook. Musical genre classification of audio
wolffd@0 13 % signals. IEEE Tr. Speech and Audio Processing, 10(5),293-302, 2002.
wolffd@0 14 % 95% in T. Pohle, E. Pampalk, G. Widmer. Evaluation of Frequently
wolffd@0 15 % Used Audio Features for Classification of Music Into Perceptual
wolffd@0 16 % Categories, ?
wolffd@0 17
wolffd@0 18 p.key = 'Threshold';
wolffd@0 19 p.type = 'Integer';
wolffd@0 20 p.default = 85;
wolffd@0 21 p.position = 2;
wolffd@0 22 option.p = p;
wolffd@0 23
wolffd@0 24 specif.option = option;
wolffd@0 25
wolffd@0 26 varargout = mirfunction(@mirrolloff,x,varargin,nargout,specif,@init,@main);
wolffd@0 27
wolffd@0 28
wolffd@0 29 function [s type] = init(x,option)
wolffd@0 30 s = mirspectrum(x);
wolffd@0 31 type = 'mirscalar';
wolffd@0 32
wolffd@0 33
wolffd@0 34 function r = main(s,option,postoption)
wolffd@0 35 if iscell(s)
wolffd@0 36 s = s{1};
wolffd@0 37 end
wolffd@0 38 m = get(s,'Magnitude');
wolffd@0 39 f = get(s,'Frequency');
wolffd@0 40 if option.p>1
wolffd@0 41 option.p = option.p/100;
wolffd@0 42 end
wolffd@0 43 v = mircompute(@algo,m,f,option.p);
wolffd@0 44 r = mirscalar(s,'Data',v,'Title','Rolloff','Unit','Hz.');
wolffd@0 45
wolffd@0 46
wolffd@0 47 function v = algo(m,f,p)
wolffd@0 48 cs = cumsum(m); % accumulation of spectrum energy
wolffd@0 49 thr = cs(end,:,:)*p; % threshold corresponding to the rolloff point
wolffd@0 50 v = zeros(1,size(cs,2),size(cs,3));
wolffd@0 51 for l = 1:size(cs,3)
wolffd@0 52 for k = 1:size(cs,2)
wolffd@0 53 fthr = find(cs(:,k,l) >= thr(1,k,l)); % find the location of the threshold
wolffd@0 54 if isempty(fthr)
wolffd@0 55 v(1,k,l) = NaN;
wolffd@0 56 else
wolffd@0 57 v(1,k,l) = f(fthr(1));
wolffd@0 58 end
wolffd@0 59 end
wolffd@0 60 end