annotate toolboxes/MIRtoolbox1.3.2/AuditoryToolbox/MakeVowel.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
rev   line source
wolffd@0 1 function y=MakeVowel(len, pitch, sampleRate, f1, f2, f3)
wolffd@0 2 % MakeVowel(len, pitch [, sampleRate, f1, f2, f3]) - Make a vowel with
wolffd@0 3 % "len" samples and the given pitch. The sample rate defaults to
wolffd@0 4 % be 22254.545454 Hz (the native Mactinosh Sampling Rate). The
wolffd@0 5 % formant frequencies are f1, f2 & f3. Some common vowels are
wolffd@0 6 % Vowel f1 f2 f3
wolffd@0 7 % /a/ 730 1090 2440
wolffd@0 8 % /i/ 270 2290 3010
wolffd@0 9 % /u/ 300 870 2240
wolffd@0 10 %
wolffd@0 11 % The pitch variable can either be a scalar indicating the actual
wolffd@0 12 % pitch frequency, or an array of impulse locations. Using an
wolffd@0 13 % array of impulses allows this routine to compute vowels with
wolffd@0 14 % varying pitch.
wolffd@0 15 %
wolffd@0 16 % Alternatively, f1 can be replaced with one of the following strings
wolffd@0 17 % 'a', 'i', 'u' and the appropriate formant frequencies are
wolffd@0 18 % automatically selected.
wolffd@0 19 % Modified by R. Duda, 3/13/94
wolffd@0 20
wolffd@0 21 % (c) 1998 Interval Research Corporation
wolffd@0 22
wolffd@0 23 if nargin < 2,
wolffd@0 24 fprintf('Format: y = MakeVowel(len, pitch [, sampleRate, f1, f2, f3])\n');
wolffd@0 25 return;
wolffd@0 26 end;
wolffd@0 27
wolffd@0 28 if nargin < 6; f3 = 0; end;
wolffd@0 29 if nargin < 5; f2 = 0; end;
wolffd@0 30 if nargin < 4,
wolffd@0 31 f1 = 0;
wolffd@0 32 else
wolffd@0 33 if isstr(f1)
wolffd@0 34 if f1 == 'a' | f1 == '/a/'
wolffd@0 35 f1=730; f2=1090; f3=2440;
wolffd@0 36 elseif f1 == 'i' | f1 == '/i/'
wolffd@0 37 f1=270; f2=2290; f3=3010;
wolffd@0 38 elseif f1 == 'u' | f1 == '/u/'
wolffd@0 39 f1=300; f2=870; f3=2240;
wolffd@0 40 end
wolffd@0 41 end;
wolffd@0 42 end;
wolffd@0 43
wolffd@0 44 if nargin < 3,
wolffd@0 45 sampleRate = 22254.545454;
wolffd@0 46 elseif sampleRate < 1000, % Apparently for test purposes
wolffd@0 47 sampleRate = 22254.545454;
wolffd@0 48 end;
wolffd@0 49
wolffd@0 50 % GlottalPulses(pitch, fs, len) - Generate a stream of
wolffd@0 51 % glottal pulses with the given pitch (in Hz) and sampling
wolffd@0 52 % frequency (sampleRate). A vector of the requested length is returned.
wolffd@0 53 y=zeros(1,len);
wolffd@0 54 if length(pitch) > 1, % If true, use to determine points
wolffd@0 55 points=pitch; % Check for valid sequence of points
wolffd@0 56 if any(points~=sort(points)),
wolffd@0 57 error('Values in pitch array must be in ascending order.')
wolffd@0 58 end;
wolffd@0 59 if points(1) < 1,
wolffd@0 60 error('Values in pitch array cannot be less than 1.');
wolffd@0 61 end;
wolffd@0 62 kmax=sum(points <= len);
wolffd@0 63 if kmax == 0,
wolffd@0 64 error('All values in pitch array exceed "len"; none should.');
wolffd@0 65 elseif kmax < length(points),
wolffd@0 66 fprintf('Some values in pitch array exceed "len"; truncating.\n');
wolffd@0 67 points=points(1:kmax);
wolffd@0 68 end;
wolffd@0 69 else
wolffd@0 70 points=1:sampleRate/pitch:len;
wolffd@0 71 end;
wolffd@0 72 indices=floor(points);
wolffd@0 73
wolffd@0 74 % Use a triangular approximation to an impulse function. The important
wolffd@0 75 % part is to keep the total amplitude the same.
wolffd@0 76 y(indices) = (indices+1)-points;
wolffd@0 77 y(indices+1) = points-indices;
wolffd@0 78
wolffd@0 79 % GlottalFilter(x,fs) - Filter an impulse train and simulate the glottal
wolffd@0 80 % transfer function. The sampling interval (sampleRate) is given in Hz.
wolffd@0 81 % The filtering performed by this function is two first-order filters
wolffd@0 82 % at 250Hz.
wolffd@0 83 a = exp(-250*2*pi/sampleRate);
wolffd@0 84 %y=filter([1,0,-1],[1,-2*a,a*a],y); % Not as good as one below....
wolffd@0 85 y=filter([1],[1,0,-a*a],y);
wolffd@0 86
wolffd@0 87 % FormantFilter(input, f, fs) - Filter an input sequence to model one
wolffd@0 88 % formant in a speech signal. The formant frequency (in Hz) is given
wolffd@0 89 % by f and the bandwidth of the formant is a constant 50Hz. The
wolffd@0 90 % sampling frequency in Hz is given by fs.
wolffd@0 91 if f1 > 0
wolffd@0 92 cft = f1/sampleRate;
wolffd@0 93 bw = 50;
wolffd@0 94 q = f1/bw;
wolffd@0 95 rho = exp(-pi * cft / q);
wolffd@0 96 theta = 2 * pi * cft * sqrt(1-1/(4 * q*q));
wolffd@0 97 a2 = -2*rho*cos(theta);
wolffd@0 98 a3 = rho*rho;
wolffd@0 99 y=filter([1+a2+a3],[1,a2,a3],y);
wolffd@0 100 end;
wolffd@0 101
wolffd@0 102 % FormantFilter(input, f, fs) - Filter an input sequence to model one
wolffd@0 103 % formant in a speech signal. The formant frequency (in Hz) is given
wolffd@0 104 % by f and the bandwidth of the formant is a constant 50Hz. The
wolffd@0 105 % sampling frequency in Hz is given by fs.
wolffd@0 106 if f2 > 0
wolffd@0 107 cft = f2/sampleRate;
wolffd@0 108 bw = 50;
wolffd@0 109 q = f2/bw;
wolffd@0 110 rho = exp(-pi * cft / q);
wolffd@0 111 theta = 2 * pi * cft * sqrt(1-1/(4 * q*q));
wolffd@0 112 a2 = -2*rho*cos(theta);
wolffd@0 113 a3 = rho*rho;
wolffd@0 114 y=filter([1+a2+a3],[1,a2,a3],y);
wolffd@0 115 end;
wolffd@0 116
wolffd@0 117 % FormantFilter(input, f, fs) - Filter an input sequence to model one
wolffd@0 118 % formant in a speech signal. The formant frequency (in Hz) is given
wolffd@0 119 % by f and the bandwidth of the formant is a constant 50Hz. The
wolffd@0 120 % sampling frequency in Hz is given by fs.
wolffd@0 121 if f3 > 0
wolffd@0 122 cft = f3/sampleRate;
wolffd@0 123 bw = 50;
wolffd@0 124 q = f3/bw;
wolffd@0 125 rho = exp(-pi * cft / q);
wolffd@0 126 theta = 2 * pi * cft * sqrt(1-1/(4 * q*q));
wolffd@0 127 a2 = -2*rho*cos(theta);
wolffd@0 128 a3 = rho*rho;
wolffd@0 129 y=filter([1+a2+a3],[1,a2,a3],y);
wolffd@0 130 end;