wolffd@0
|
1 function mix = gmm(dim, ncentres, covar_type, ppca_dim)
|
wolffd@0
|
2 %GMM Creates a Gaussian mixture model with specified architecture.
|
wolffd@0
|
3 %
|
wolffd@0
|
4 % Description
|
wolffd@0
|
5 % MIX = GMM(DIM, NCENTRES, COVARTYPE) takes the dimension of the space
|
wolffd@0
|
6 % DIM, the number of centres in the mixture model and the type of the
|
wolffd@0
|
7 % mixture model, and returns a data structure MIX. The mixture model
|
wolffd@0
|
8 % type defines the covariance structure of each component Gaussian:
|
wolffd@0
|
9 % 'spherical' = single variance parameter for each component: stored as a vector
|
wolffd@0
|
10 % 'diag' = diagonal matrix for each component: stored as rows of a matrix
|
wolffd@0
|
11 % 'full' = full matrix for each component: stored as 3d array
|
wolffd@0
|
12 % 'ppca' = probabilistic PCA: stored as principal components (in a 3d array
|
wolffd@0
|
13 % and associated variances and off-subspace noise
|
wolffd@0
|
14 % MIX = GMM(DIM, NCENTRES, COVARTYPE, PPCA_DIM) also sets the
|
wolffd@0
|
15 % dimension of the PPCA sub-spaces: the default value is one.
|
wolffd@0
|
16 %
|
wolffd@0
|
17 % The priors are initialised to equal values summing to one, and the
|
wolffd@0
|
18 % covariances are all the identity matrix (or equivalent). The centres
|
wolffd@0
|
19 % are initialised randomly from a zero mean unit variance Gaussian.
|
wolffd@0
|
20 % This makes use of the MATLAB function RANDN and so the seed for the
|
wolffd@0
|
21 % random weight initialisation can be set using RANDN('STATE', S) where
|
wolffd@0
|
22 % S is the state value.
|
wolffd@0
|
23 %
|
wolffd@0
|
24 % The fields in MIX are
|
wolffd@0
|
25 %
|
wolffd@0
|
26 % type = 'gmm'
|
wolffd@0
|
27 % nin = the dimension of the space
|
wolffd@0
|
28 % ncentres = number of mixture components
|
wolffd@0
|
29 % covartype = string for type of variance model
|
wolffd@0
|
30 % priors = mixing coefficients
|
wolffd@0
|
31 % centres = means of Gaussians: stored as rows of a matrix
|
wolffd@0
|
32 % covars = covariances of Gaussians
|
wolffd@0
|
33 % The additional fields for mixtures of PPCA are
|
wolffd@0
|
34 % U = principal component subspaces
|
wolffd@0
|
35 % lambda = in-space covariances: stored as rows of a matrix
|
wolffd@0
|
36 % The off-subspace noise is stored in COVARS.
|
wolffd@0
|
37 %
|
wolffd@0
|
38 % See also
|
wolffd@0
|
39 % GMMPAK, GMMUNPAK, GMMSAMP, GMMINIT, GMMEM, GMMACTIV, GMMPOST,
|
wolffd@0
|
40 % GMMPROB
|
wolffd@0
|
41 %
|
wolffd@0
|
42
|
wolffd@0
|
43 % Copyright (c) Ian T Nabney (1996-2001)
|
wolffd@0
|
44
|
wolffd@0
|
45 if ncentres < 1
|
wolffd@0
|
46 error('Number of centres must be greater than zero')
|
wolffd@0
|
47 end
|
wolffd@0
|
48
|
wolffd@0
|
49 mix.type = 'gmm';
|
wolffd@0
|
50 mix.nin = dim;
|
wolffd@0
|
51 mix.ncentres = ncentres;
|
wolffd@0
|
52
|
wolffd@0
|
53 vartypes = {'spherical', 'diag', 'full', 'ppca'};
|
wolffd@0
|
54
|
wolffd@0
|
55 if sum(strcmp(covar_type, vartypes)) == 0
|
wolffd@0
|
56 error('Undefined covariance type')
|
wolffd@0
|
57 else
|
wolffd@0
|
58 mix.covar_type = covar_type;
|
wolffd@0
|
59 end
|
wolffd@0
|
60
|
wolffd@0
|
61 % Make default dimension of PPCA subspaces one.
|
wolffd@0
|
62 if strcmp(covar_type, 'ppca')
|
wolffd@0
|
63 if nargin < 4
|
wolffd@0
|
64 ppca_dim = 1;
|
wolffd@0
|
65 end
|
wolffd@0
|
66 if ppca_dim > dim
|
wolffd@0
|
67 error('Dimension of PPCA subspaces must be less than data.')
|
wolffd@0
|
68 end
|
wolffd@0
|
69 mix.ppca_dim = ppca_dim;
|
wolffd@0
|
70 end
|
wolffd@0
|
71
|
wolffd@0
|
72 % Initialise priors to be equal and summing to one
|
wolffd@0
|
73 mix.priors = ones(1,mix.ncentres) ./ mix.ncentres;
|
wolffd@0
|
74
|
wolffd@0
|
75 % Initialise centres
|
wolffd@0
|
76 mix.centres = randn(mix.ncentres, mix.nin);
|
wolffd@0
|
77
|
wolffd@0
|
78 % Initialise all the variances to unity
|
wolffd@0
|
79 switch mix.covar_type
|
wolffd@0
|
80
|
wolffd@0
|
81 case 'spherical'
|
wolffd@0
|
82 mix.covars = ones(1, mix.ncentres);
|
wolffd@0
|
83 mix.nwts = mix.ncentres + mix.ncentres*mix.nin + mix.ncentres;
|
wolffd@0
|
84 case 'diag'
|
wolffd@0
|
85 % Store diagonals of covariance matrices as rows in a matrix
|
wolffd@0
|
86 mix.covars = ones(mix.ncentres, mix.nin);
|
wolffd@0
|
87 mix.nwts = mix.ncentres + mix.ncentres*mix.nin + ...
|
wolffd@0
|
88 mix.ncentres*mix.nin;
|
wolffd@0
|
89 case 'full'
|
wolffd@0
|
90 % Store covariance matrices in a row vector of matrices
|
wolffd@0
|
91 mix.covars = repmat(eye(mix.nin), [1 1 mix.ncentres]);
|
wolffd@0
|
92 mix.nwts = mix.ncentres + mix.ncentres*mix.nin + ...
|
wolffd@0
|
93 mix.ncentres*mix.nin*mix.nin;
|
wolffd@0
|
94 case 'ppca'
|
wolffd@0
|
95 % This is the off-subspace noise: make it smaller than
|
wolffd@0
|
96 % lambdas
|
wolffd@0
|
97 mix.covars = 0.1*ones(1, mix.ncentres);
|
wolffd@0
|
98 % Also set aside storage for principal components and
|
wolffd@0
|
99 % associated variances
|
wolffd@0
|
100 init_space = eye(mix.nin);
|
wolffd@0
|
101 init_space = init_space(:, 1:mix.ppca_dim);
|
wolffd@0
|
102 init_space(mix.ppca_dim+1:mix.nin, :) = ...
|
wolffd@0
|
103 ones(mix.nin - mix.ppca_dim, mix.ppca_dim);
|
wolffd@0
|
104 mix.U = repmat(init_space , [1 1 mix.ncentres]);
|
wolffd@0
|
105 mix.lambda = ones(mix.ncentres, mix.ppca_dim);
|
wolffd@0
|
106 % Take account of additional parameters
|
wolffd@0
|
107 mix.nwts = mix.ncentres + mix.ncentres*mix.nin + ...
|
wolffd@0
|
108 mix.ncentres + mix.ncentres*mix.ppca_dim + ...
|
wolffd@0
|
109 mix.ncentres*mix.nin*mix.ppca_dim;
|
wolffd@0
|
110 otherwise
|
wolffd@0
|
111 error(['Unknown covariance type ', mix.covar_type]);
|
wolffd@0
|
112 end
|
wolffd@0
|
113
|