wolffd@0
|
1 function net = glm(nin, nout, outfunc, prior, beta)
|
wolffd@0
|
2 %GLM Create a generalized linear model.
|
wolffd@0
|
3 %
|
wolffd@0
|
4 % Description
|
wolffd@0
|
5 %
|
wolffd@0
|
6 % NET = GLM(NIN, NOUT, FUNC) takes the number of inputs and outputs for
|
wolffd@0
|
7 % a generalized linear model, together with a string FUNC which
|
wolffd@0
|
8 % specifies the output unit activation function, and returns a data
|
wolffd@0
|
9 % structure NET. The weights are drawn from a zero mean, isotropic
|
wolffd@0
|
10 % Gaussian, with variance scaled by the fan-in of the output units.
|
wolffd@0
|
11 % This makes use of the Matlab function RANDN and so the seed for the
|
wolffd@0
|
12 % random weight initialization can be set using RANDN('STATE', S)
|
wolffd@0
|
13 % where S is the seed value. The optional argument ALPHA sets the
|
wolffd@0
|
14 % inverse variance for the weight initialization.
|
wolffd@0
|
15 %
|
wolffd@0
|
16 % The fields in NET are
|
wolffd@0
|
17 % type = 'glm'
|
wolffd@0
|
18 % nin = number of inputs
|
wolffd@0
|
19 % nout = number of outputs
|
wolffd@0
|
20 % nwts = total number of weights and biases
|
wolffd@0
|
21 % actfn = string describing the output unit activation function:
|
wolffd@0
|
22 % 'linear'
|
wolffd@0
|
23 % 'logistic'
|
wolffd@0
|
24 % 'softmax'
|
wolffd@0
|
25 % w1 = first-layer weight matrix
|
wolffd@0
|
26 % b1 = first-layer bias vector
|
wolffd@0
|
27 %
|
wolffd@0
|
28 % NET = GLM(NIN, NOUT, FUNC, PRIOR), in which PRIOR is a scalar, allows
|
wolffd@0
|
29 % the field NET.ALPHA in the data structure NET to be set,
|
wolffd@0
|
30 % corresponding to a zero-mean isotropic Gaussian prior with inverse
|
wolffd@0
|
31 % variance with value PRIOR. Alternatively, PRIOR can consist of a data
|
wolffd@0
|
32 % structure with fields ALPHA and INDEX, allowing individual Gaussian
|
wolffd@0
|
33 % priors to be set over groups of weights in the network. Here ALPHA is
|
wolffd@0
|
34 % a column vector in which each element corresponds to a separate
|
wolffd@0
|
35 % group of weights, which need not be mutually exclusive. The
|
wolffd@0
|
36 % membership of the groups is defined by the matrix INDEX in which the
|
wolffd@0
|
37 % columns correspond to the elements of ALPHA. Each column has one
|
wolffd@0
|
38 % element for each weight in the matrix, in the order defined by the
|
wolffd@0
|
39 % function GLMPAK, and each element is 1 or 0 according to whether the
|
wolffd@0
|
40 % weight is a member of the corresponding group or not.
|
wolffd@0
|
41 %
|
wolffd@0
|
42 % NET = GLM(NIN, NOUT, FUNC, PRIOR, BETA) also sets the additional
|
wolffd@0
|
43 % field NET.BETA in the data structure NET, where beta corresponds to
|
wolffd@0
|
44 % the inverse noise variance.
|
wolffd@0
|
45 %
|
wolffd@0
|
46 % See also
|
wolffd@0
|
47 % GLMPAK, GLMUNPAK, GLMFWD, GLMERR, GLMGRAD, GLMTRAIN
|
wolffd@0
|
48 %
|
wolffd@0
|
49
|
wolffd@0
|
50 % Copyright (c) Ian T Nabney (1996-2001)
|
wolffd@0
|
51
|
wolffd@0
|
52 net.type = 'glm';
|
wolffd@0
|
53 net.nin = nin;
|
wolffd@0
|
54 net.nout = nout;
|
wolffd@0
|
55 net.nwts = (nin + 1)*nout;
|
wolffd@0
|
56
|
wolffd@0
|
57 outtfns = {'linear', 'logistic', 'softmax'};
|
wolffd@0
|
58
|
wolffd@0
|
59 if sum(strcmp(outfunc, outtfns)) == 0
|
wolffd@0
|
60 error('Undefined activation function. Exiting.');
|
wolffd@0
|
61 else
|
wolffd@0
|
62 net.outfn = outfunc;
|
wolffd@0
|
63 end
|
wolffd@0
|
64
|
wolffd@0
|
65 if nargin > 3
|
wolffd@0
|
66 if isstruct(prior)
|
wolffd@0
|
67 net.alpha = prior.alpha;
|
wolffd@0
|
68 net.index = prior.index;
|
wolffd@0
|
69 elseif size(prior) == [1 1]
|
wolffd@0
|
70 net.alpha = prior;
|
wolffd@0
|
71 else
|
wolffd@0
|
72 error('prior must be a scalar or structure');
|
wolffd@0
|
73 end
|
wolffd@0
|
74 end
|
wolffd@0
|
75
|
wolffd@0
|
76 net.w1 = randn(nin, nout)/sqrt(nin + 1);
|
wolffd@0
|
77 net.b1 = randn(1, nout)/sqrt(nin + 1);
|
wolffd@0
|
78
|
wolffd@0
|
79 if nargin == 5
|
wolffd@0
|
80 net.beta = beta;
|
wolffd@0
|
81 end
|
wolffd@0
|
82
|