annotate toolboxes/FullBNT-1.0.7/netlab3.3/gbayes.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
rev   line source
wolffd@0 1 function [g, gdata, gprior] = gbayes(net, gdata)
wolffd@0 2 %GBAYES Evaluate gradient of Bayesian error function for network.
wolffd@0 3 %
wolffd@0 4 % Description
wolffd@0 5 % G = GBAYES(NET, GDATA) takes a network data structure NET together
wolffd@0 6 % the data contribution to the error gradient for a set of inputs and
wolffd@0 7 % targets. It returns the regularised error gradient using any zero
wolffd@0 8 % mean Gaussian priors on the weights defined in NET. In addition, if
wolffd@0 9 % a MASK is defined in NET, then the entries in G that correspond to
wolffd@0 10 % weights with a 0 in the mask are removed.
wolffd@0 11 %
wolffd@0 12 % [G, GDATA, GPRIOR] = GBAYES(NET, GDATA) additionally returns the data
wolffd@0 13 % and prior components of the error.
wolffd@0 14 %
wolffd@0 15 % See also
wolffd@0 16 % ERRBAYES, GLMGRAD, MLPGRAD, RBFGRAD
wolffd@0 17 %
wolffd@0 18
wolffd@0 19 % Copyright (c) Ian T Nabney (1996-2001)
wolffd@0 20
wolffd@0 21 % Evaluate the data contribution to the gradient.
wolffd@0 22 if (isfield(net, 'mask'))
wolffd@0 23 gdata = gdata(logical(net.mask));
wolffd@0 24 end
wolffd@0 25 if isfield(net, 'beta')
wolffd@0 26 g1 = gdata*net.beta;
wolffd@0 27 else
wolffd@0 28 g1 = gdata;
wolffd@0 29 end
wolffd@0 30
wolffd@0 31 % Evaluate the prior contribution to the gradient.
wolffd@0 32 if isfield(net, 'alpha')
wolffd@0 33 w = netpak(net);
wolffd@0 34 if size(net.alpha) == [1 1]
wolffd@0 35 gprior = w;
wolffd@0 36 g2 = net.alpha*gprior;
wolffd@0 37 else
wolffd@0 38 if (isfield(net, 'mask'))
wolffd@0 39 nindx_cols = size(net.index, 2);
wolffd@0 40 nmask_rows = size(find(net.mask), 1);
wolffd@0 41 index = reshape(net.index(logical(repmat(net.mask, ...
wolffd@0 42 1, nindx_cols))), nmask_rows, nindx_cols);
wolffd@0 43 else
wolffd@0 44 index = net.index;
wolffd@0 45 end
wolffd@0 46
wolffd@0 47 ngroups = size(net.alpha, 1);
wolffd@0 48 gprior = index'.*(ones(ngroups, 1)*w);
wolffd@0 49 g2 = net.alpha'*gprior;
wolffd@0 50 end
wolffd@0 51 else
wolffd@0 52 gprior = 0;
wolffd@0 53 g2 = 0;
wolffd@0 54 end
wolffd@0 55
wolffd@0 56 g = g1 + g2;