annotate toolboxes/FullBNT-1.0.7/netlab3.3/errbayes.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
rev   line source
wolffd@0 1 function [e, edata, eprior] = errbayes(net, edata)
wolffd@0 2 %ERRBAYES Evaluate Bayesian error function for network.
wolffd@0 3 %
wolffd@0 4 % Description
wolffd@0 5 % E = ERRBAYES(NET, EDATA) takes a network data structure NET together
wolffd@0 6 % the data contribution to the error for a set of inputs and targets.
wolffd@0 7 % It returns the regularised error using any zero mean Gaussian priors
wolffd@0 8 % on the weights defined in NET.
wolffd@0 9 %
wolffd@0 10 % [E, EDATA, EPRIOR] = ERRBAYES(NET, X, T) additionally returns the
wolffd@0 11 % data and prior components of the error.
wolffd@0 12 %
wolffd@0 13 % See also
wolffd@0 14 % GLMERR, MLPERR, RBFERR
wolffd@0 15 %
wolffd@0 16
wolffd@0 17 % Copyright (c) Ian T Nabney (1996-2001)
wolffd@0 18
wolffd@0 19 % Evaluate the data contribution to the error.
wolffd@0 20 if isfield(net, 'beta')
wolffd@0 21 e1 = net.beta*edata;
wolffd@0 22 else
wolffd@0 23 e1 = edata;
wolffd@0 24 end
wolffd@0 25
wolffd@0 26 % Evaluate the prior contribution to the error.
wolffd@0 27 if isfield(net, 'alpha')
wolffd@0 28 w = netpak(net);
wolffd@0 29 if size(net.alpha) == [1 1]
wolffd@0 30 eprior = 0.5*(w*w');
wolffd@0 31 e2 = eprior*net.alpha;
wolffd@0 32 else
wolffd@0 33 if (isfield(net, 'mask'))
wolffd@0 34 nindx_cols = size(net.index, 2);
wolffd@0 35 nmask_rows = size(find(net.mask), 1);
wolffd@0 36 index = reshape(net.index(logical(repmat(net.mask, ...
wolffd@0 37 1, nindx_cols))), nmask_rows, nindx_cols);
wolffd@0 38 else
wolffd@0 39 index = net.index;
wolffd@0 40 end
wolffd@0 41 eprior = 0.5*(w.^2)*index;
wolffd@0 42 e2 = eprior*net.alpha;
wolffd@0 43 end
wolffd@0 44 else
wolffd@0 45 eprior = 0;
wolffd@0 46 e2 = 0;
wolffd@0 47 end
wolffd@0 48
wolffd@0 49 e = e1 + e2;