annotate toolboxes/FullBNT-1.0.7/netlab3.3/demmlp1.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
rev   line source
wolffd@0 1 %DEMMLP1 Demonstrate simple regression using a multi-layer perceptron
wolffd@0 2 %
wolffd@0 3 % Description
wolffd@0 4 % The problem consists of one input variable X and one target variable
wolffd@0 5 % T with data generated by sampling X at equal intervals and then
wolffd@0 6 % generating target data by computing SIN(2*PI*X) and adding Gaussian
wolffd@0 7 % noise. A 2-layer network with linear outputs is trained by minimizing
wolffd@0 8 % a sum-of-squares error function using the scaled conjugate gradient
wolffd@0 9 % optimizer.
wolffd@0 10 %
wolffd@0 11 % See also
wolffd@0 12 % MLP, MLPERR, MLPGRAD, SCG
wolffd@0 13 %
wolffd@0 14
wolffd@0 15 % Copyright (c) Ian T Nabney (1996-2001)
wolffd@0 16
wolffd@0 17
wolffd@0 18 % Generate the matrix of inputs x and targets t.
wolffd@0 19
wolffd@0 20 ndata = 20; % Number of data points.
wolffd@0 21 noise = 0.2; % Standard deviation of noise distribution.
wolffd@0 22 x = [0:1/(ndata - 1):1]';
wolffd@0 23 randn('state', 1);
wolffd@0 24 t = sin(2*pi*x) + noise*randn(ndata, 1);
wolffd@0 25
wolffd@0 26 clc
wolffd@0 27 disp('This demonstration illustrates the use of a Multi-Layer Perceptron')
wolffd@0 28 disp('network for regression problems. The data is generated from a noisy')
wolffd@0 29 disp('sine function.')
wolffd@0 30 disp(' ')
wolffd@0 31 disp('Press any key to continue.')
wolffd@0 32 pause
wolffd@0 33
wolffd@0 34 % Set up network parameters.
wolffd@0 35 nin = 1; % Number of inputs.
wolffd@0 36 nhidden = 3; % Number of hidden units.
wolffd@0 37 nout = 1; % Number of outputs.
wolffd@0 38 alpha = 0.01; % Coefficient of weight-decay prior.
wolffd@0 39
wolffd@0 40 % Create and initialize network weight vector.
wolffd@0 41
wolffd@0 42 net = mlp(nin, nhidden, nout, 'linear', alpha);
wolffd@0 43
wolffd@0 44 % Set up vector of options for the optimiser.
wolffd@0 45
wolffd@0 46 options = zeros(1,18);
wolffd@0 47 options(1) = 1; % This provides display of error values.
wolffd@0 48 options(14) = 100; % Number of training cycles.
wolffd@0 49
wolffd@0 50 clc
wolffd@0 51 disp(['The network has ', num2str(nhidden), ' hidden units and a weight decay'])
wolffd@0 52 disp(['coefficient of ', num2str(alpha), '.'])
wolffd@0 53 disp(' ')
wolffd@0 54 disp('After initializing the network, we train it use the scaled conjugate')
wolffd@0 55 disp('gradients algorithm for 100 cycles.')
wolffd@0 56 disp(' ')
wolffd@0 57 disp('Press any key to continue')
wolffd@0 58 pause
wolffd@0 59
wolffd@0 60 % Train using scaled conjugate gradients.
wolffd@0 61 [net, options] = netopt(net, options, x, t, 'scg');
wolffd@0 62
wolffd@0 63 disp(' ')
wolffd@0 64 disp('Now we plot the data, underlying function, and network outputs')
wolffd@0 65 disp('on a single graph to compare the results.')
wolffd@0 66 disp(' ')
wolffd@0 67 disp('Press any key to continue.')
wolffd@0 68 pause
wolffd@0 69
wolffd@0 70 % Plot the data, the original function, and the trained network function.
wolffd@0 71 plotvals = [0:0.01:1]';
wolffd@0 72 y = mlpfwd(net, plotvals);
wolffd@0 73 fh1 = figure;
wolffd@0 74 plot(x, t, 'ob')
wolffd@0 75 hold on
wolffd@0 76 xlabel('Input')
wolffd@0 77 ylabel('Target')
wolffd@0 78 axis([0 1 -1.5 1.5])
wolffd@0 79 [fx, fy] = fplot('sin(2*pi*x)', [0 1]);
wolffd@0 80 plot(fx, fy, '-r', 'LineWidth', 2)
wolffd@0 81 plot(plotvals, y, '-k', 'LineWidth', 2)
wolffd@0 82 legend('data', 'function', 'network');
wolffd@0 83
wolffd@0 84 disp(' ')
wolffd@0 85 disp('Press any key to end.')
wolffd@0 86 pause
wolffd@0 87 close(fh1);
wolffd@0 88 clear all;