wolffd@0
|
1 %DEMGLM2 Demonstrate simple classification using a generalized linear model.
|
wolffd@0
|
2 %
|
wolffd@0
|
3 % Description
|
wolffd@0
|
4 % The problem consists of a two dimensional input matrix DATA and a
|
wolffd@0
|
5 % vector of classifications T. The data is generated from three
|
wolffd@0
|
6 % Gaussian clusters, and a generalized linear model with softmax output
|
wolffd@0
|
7 % is trained using iterative reweighted least squares. A plot of the
|
wolffd@0
|
8 % data together with regions shaded by the classification given by the
|
wolffd@0
|
9 % network is generated.
|
wolffd@0
|
10 %
|
wolffd@0
|
11 % See also
|
wolffd@0
|
12 % DEMGLM1, GLM, GLMTRAIN
|
wolffd@0
|
13 %
|
wolffd@0
|
14
|
wolffd@0
|
15 % Copyright (c) Ian T Nabney (1996-2001)
|
wolffd@0
|
16
|
wolffd@0
|
17
|
wolffd@0
|
18 % Generate data from three classes in 2d
|
wolffd@0
|
19 input_dim = 2;
|
wolffd@0
|
20
|
wolffd@0
|
21 % Fix seeds for reproducible results
|
wolffd@0
|
22 randn('state', 42);
|
wolffd@0
|
23 rand('state', 42);
|
wolffd@0
|
24
|
wolffd@0
|
25 ndata = 100;
|
wolffd@0
|
26 % Generate mixture of three Gaussians in two dimensional space
|
wolffd@0
|
27 mix = gmm(2, 3, 'spherical');
|
wolffd@0
|
28 mix.priors = [0.4 0.3 0.3]; % Cluster priors
|
wolffd@0
|
29 mix.centres = [2, 2; 0.0, 0.0; 1, -1]; % Cluster centres
|
wolffd@0
|
30 mix.covars = [0.5 1.0 0.6];
|
wolffd@0
|
31
|
wolffd@0
|
32 [data, label] = gmmsamp(mix, ndata);
|
wolffd@0
|
33 id = eye(3);
|
wolffd@0
|
34 targets = id(label,:);
|
wolffd@0
|
35
|
wolffd@0
|
36 % Plot the result
|
wolffd@0
|
37
|
wolffd@0
|
38 clc
|
wolffd@0
|
39 disp('This demonstration illustrates the use of a generalized linear model')
|
wolffd@0
|
40 disp('to classify data from three classes in a two-dimensional space. We')
|
wolffd@0
|
41 disp('begin by generating and plotting the data.')
|
wolffd@0
|
42 disp(' ')
|
wolffd@0
|
43 disp('Press any key to continue.')
|
wolffd@0
|
44 pause
|
wolffd@0
|
45
|
wolffd@0
|
46 fh1 = figure;
|
wolffd@0
|
47 plot(data(label==1,1), data(label==1,2), 'bo');
|
wolffd@0
|
48 hold on
|
wolffd@0
|
49 axis([-4 5 -4 5]);
|
wolffd@0
|
50 set(gca, 'Box', 'on')
|
wolffd@0
|
51 plot(data(label==2,1), data(label==2,2), 'rx')
|
wolffd@0
|
52 plot(data(label==3, 1), data(label==3, 2), 'go')
|
wolffd@0
|
53 title('Data')
|
wolffd@0
|
54
|
wolffd@0
|
55 clc
|
wolffd@0
|
56 disp('Now we fit a model consisting of a softmax function of')
|
wolffd@0
|
57 disp('a linear combination of the input variables.')
|
wolffd@0
|
58 disp(' ')
|
wolffd@0
|
59 disp('The model is trained using the IRLS algorithm for up to 10 iterations')
|
wolffd@0
|
60 disp(' ')
|
wolffd@0
|
61 disp('Press any key to continue.')
|
wolffd@0
|
62 pause
|
wolffd@0
|
63
|
wolffd@0
|
64 net = glm(input_dim, size(targets, 2), 'softmax');
|
wolffd@0
|
65 options = foptions;
|
wolffd@0
|
66 options(1) = 1;
|
wolffd@0
|
67 options(14) = 10;
|
wolffd@0
|
68 net = glmtrain(net, options, data, targets);
|
wolffd@0
|
69
|
wolffd@0
|
70 disp(' ')
|
wolffd@0
|
71 disp('We now plot the decision regions given by this model.')
|
wolffd@0
|
72 disp(' ')
|
wolffd@0
|
73 disp('Press any key to continue.')
|
wolffd@0
|
74 pause
|
wolffd@0
|
75
|
wolffd@0
|
76 x = -4.0:0.2:5.0;
|
wolffd@0
|
77 y = -4.0:0.2:5.0;
|
wolffd@0
|
78 [X, Y] = meshgrid(x,y);
|
wolffd@0
|
79 X = X(:);
|
wolffd@0
|
80 Y = Y(:);
|
wolffd@0
|
81 grid = [X Y];
|
wolffd@0
|
82 Z = glmfwd(net, grid);
|
wolffd@0
|
83 [foo , class] = max(Z');
|
wolffd@0
|
84 class = class';
|
wolffd@0
|
85 colors = ['b.'; 'r.'; 'g.'];
|
wolffd@0
|
86 for i = 1:3
|
wolffd@0
|
87 thisX = X(class == i);
|
wolffd@0
|
88 thisY = Y(class == i);
|
wolffd@0
|
89 h = plot(thisX, thisY, colors(i,:));
|
wolffd@0
|
90 set(h, 'MarkerSize', 8);
|
wolffd@0
|
91 end
|
wolffd@0
|
92 title('Plot of Decision regions')
|
wolffd@0
|
93
|
wolffd@0
|
94 hold off
|
wolffd@0
|
95
|
wolffd@0
|
96 clc
|
wolffd@0
|
97 disp('Note that the boundaries of decision regions are straight lines.')
|
wolffd@0
|
98 disp(' ')
|
wolffd@0
|
99 disp('Press any key to end.')
|
wolffd@0
|
100 pause
|
wolffd@0
|
101 close(fh1);
|
wolffd@0
|
102 clear all;
|
wolffd@0
|
103
|